Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 090305    DOI: 10.1088/1674-1056/27/9/090305
GENERAL Prev   Next  

Demonstration of quantum anti-Zeno effect with a single trapped ion

Man-Chao Zhang(张满超)1,2, Wei Wu(吴伟)1,2, Lin-Ze He(何林泽)1,2, Yi Xie(谢艺)1,2, Chun-Wang Wu(吴春旺)1,2, Quan Li(黎全)1,2, Ping-Xing Chen(陈平形)1,2
1 Department of Physics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China;
2 State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China

We experimentally demonstrate the quantum anti-Zeno effect in a two-level system based on a single trapped ion 40Ca+. In the large detuning regime, we show that the transfer from the ground state to the excited state can be remarkably enhanced by the inserted projection measurements. The inserted measurements in our experiment are realized by the electron shelving technique. Compared to the ideal projection measurement, which makes the quantum state collapse instantaneously, a practical electron shelving process needs a finite time duration. The minimum time for this collapse process is shown to be inversely proportional to the square of the coupling strength between the measurement laser and the system.

Keywords:  quantum anti-Zeno effect      single trapped ion      quantum measurement  
Received:  22 May 2018      Revised:  19 June 2018      Accepted manuscript online: 
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  

Project supported by the National Basic Research Program of China (Grant No. 2016YFA0301903), the National Natural Science Foundation of China (Grant Nos. 11174370, 11304387, 61632021, 11305262, 11574398, and N 61205108), and the Research Plan Project of National University of Defense Technology, China (Grant No. ZK16-03-04).

Corresponding Authors:  Chun-Wang Wu, Ping-Xing Chen     E-mail:;

Cite this article: 

Man-Chao Zhang(张满超), Wei Wu(吴伟), Lin-Ze He(何林泽), Yi Xie(谢艺), Chun-Wang Wu(吴春旺), Quan Li(黎全), Ping-Xing Chen(陈平形) Demonstration of quantum anti-Zeno effect with a single trapped ion 2018 Chin. Phys. B 27 090305

[1] Kofman A G and Kurizki G 2001 Zeitschrift Für Naturforschung A 56 83
[2] Itano W M, Heinzen D J, Bollinger J J and Wineland D J 1990 Phys. Rev. A 41 2295
[3] Petrosky T and Tasaki S and Prigogine I 1990 Phys. Lett. A 151 109
[4] Peres A and Ron A 1990 Phys. Rev. A 42 5720
[5] Block E and Berman P R 1991 Phys. Rev. A 44 1466
[6] Wang X B, You J Q and Nori F 2008 Phys. Rev. A 77 3195
[7] Ren T T, Luo J, Sun X P and Zhan M S 2009 Chin. Phys. B 18 4711
[8] Alfredo L 2003 Phys. Rev. A 67 062113
[9] Kofman A G and Kurizki G 2000 Nature 405 546
[10] Facchi P, Nakazato H and Pascazio S 2001 Phys. Rev. Lett. 86 2699
[11] Ai Q, Xu D, Yi S, Kofman A G, Sun C P and Nori F 2013 Sci. Rep. 3 1752
[12] Huang X S, Xie S Y and Yang Y P 2006 Acta Phys. Sin. 55 2269 (in Chinese)
[13] He Z and Yao C M 2014 Chin. Phys. B 23 110601
[14] Sun S P 2000 Physics 29 457 (in Chinese)
[15] Fischer M C, Gutiérrez-Medina B and Raizen M G 2001 Phys. Rev. Lett. 87 040402
[16] Barone A, Kurizki G and Kofman A G 2004 Phys. Rev. Lett. 92 200403
[17] Chen P W, Tsai D B and Bennett P 2010 Phys. Rev. B 81 115307
[18] Keisuke F and Katsuji Y 2010 Phys. Rev. A 82 5929
[19] Cao X, Ai Q, Sun C P and Franco N 2012 Phys. Lett. A 376 349
[20] Zaman C A and Gong J 2014 Phys. Rev. A 90 165
[21] Wei W and Qing L H 2017 Phys. Rev. A 95 042132
[22] Adam Z C 2016 Sci. Rep. 6 29497
[23] Pascazio S and Namiki M 1994 Phys. Rev. A 50 4582
[24] Layden D, Martinmartinez E and Kempf A 2015 Phys. Rev. A 91 022106
[25] Harrington P M, Monroe J T and Murch K W 2017 Phys. Rev. Lett. 118 240401
[26] Nagourney W, Sandberg J and Dehmelt H 1986 Phys. Rev. Lett. 56 2797
[27] Sasura M and Buzek V 2002 Optica Acta International Journal of Optics 49 1592
[28] Cai L H, Hai W H and Lu G B 2006 Chin. Phys. B 15 2275
[29] Roos C 2000 Controlling the Quantum State of Trapped Ions (Ph.D. Dissertation) (University Innsbruck)
[30] Kimble H J, Cook R J and Wells A L 1986 Phys. Rev. A 34 3190
[1] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[2] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[3] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[4] Double-dot interferometer for quantum measurement of Majorana qubits and stabilizers
Kai Zhou(周凯), Cheng Zhang(张程), Lupei Qin(秦陆培), and Xin-Qi Li(李新奇). Chin. Phys. B, 2021, 30(1): 010301.
[5] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[6] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[7] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
[8] Promote entanglement trapping in photonic band gaps
Han Wei (韩伟), Zhang Ying-Jie (张英杰), Yan Wei-Bin (闫伟斌), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2014, 23(11): 110304.
[9] Enhancing the precision of phase estimation by weak measurement and quantum measurement reversal
He Zhi (贺志), Yao Chun-Mei (姚春梅). Chin. Phys. B, 2014, 23(11): 110601.
[10] Scheme for teleportation of unknown single qubit state via continuous variables entangling channel
Wang Zhong-Jie(王中结), Zhang Kan(张侃), and Fan Chao-Yang(范朝阳). Chin. Phys. B, 2010, 19(11): 110311.
[11] The remote implementation of all possible generalized quantum measurement on single atomic qubit in a quantum network
Han Yang(韩阳), Wu Chun-Wang(吴春旺), Wu Wei(吴伟), Chen Ping-Xing(陈平形), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2009, 18(8): 3215-3220.
[12] A scheme of quantum phase gate for trapped ion
Cai Jian-Wu(蔡建武), Fang Mao-Fa(方卯发) Zheng Xiao-Juan(郑小娟), and Liao Xiang-Ping(廖湘萍). Chin. Phys. B, 2007, 16(6): 1566-1569.
[13] Linear optical implementation of optimal unambiguous discrimination among quantum states
Lu Jing(卢竞), Zhou Lan(周兰), and Kuang Le-Man(匡乐满). Chin. Phys. B, 2006, 15(9): 1941-1946.
No Suggested Reading articles found!