Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 065201    DOI: 10.1088/1674-1056/abeb0e
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel

Ming-Hao Yu(喻明浩)1,†, Zhe Wang(王哲)1, Ze-Yang Qiu(邱泽洋)1, Bo Lv(吕博)1, and Bo-Rui Zheng(郑博睿)2
1 Faculty of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China;
2 School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract  We take the established inductively coupled plasma (ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numerical simulation and experimental validation. The distribution characteristics and interaction mechanism of the flow field and electromagnetic field of the ICP wind tunnel are investigated using the multi-field coupling method of flow, electromagnetic, chemical, and thermodynamic field. The accuracy of the numerical simulation is validated by comparing the experimental results with the simulation results. Thereafter, the wind tunnel pressure, air velocity, electron density, Joule heating rate, Lorentz force, and electric field intensity obtained using the simulation are analyzed and discussed. The results indicate that for the 1.2-MW ICP wind tunnel, the maximum values of temperature, pressure, electron number density, and other parameters are observed during coil heating. The influence of the radial Lorentz force on the momentum transfer is stronger than that of the axial Lorentz force. The electron number density at the central axis and the amplitude and position of the Joule heating rate are affected by the radial Lorentz force. Moreover, the plasma in the wind tunnel is constantly in the subsonic flow state, and a strong eddy flow is easily generated at the inlet of the wind tunnel.
Keywords:  inductively coupled plasma      multiphysics field      coupling mechanism      simulation and experiment  
Received:  21 October 2020      Revised:  08 February 2021      Accepted manuscript online:  02 March 2021
PACS:  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.65.-y (Plasma simulation)  
  52.75.Hn (Plasma torches)  
  94.20.Fg (Plasma temperature and density)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11705143), the Open Foundation for Key Laboratories of National Defense Science and Technology of China (Grant No. 6142202031901), and the Foundation for Research and Development of Applied Technology in Beilin District of Xi'an, China (Grant No. GX2047).
Corresponding Authors:  Ming-Hao Yu     E-mail:  ymh@xaut.edu.cn

Cite this article: 

Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿) Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel 2021 Chin. Phys. B 30 065201

[1] Liu L, Wang, G, Wang Y, Ma H, Luo J and Zhang J 2017 Acta Aeronaut. Astronaut. Sin. 38 96 (in Chinese)
[2] Ma H, Wang G, Luo J, Liu L, Pan D, Zhang J, Xing Y and Tang F 2018 Acta Phys. Sin. 67 186 (in Chinese)
[3] Wei X L, Xu H J, Li J H, Lin M and Song H M 2015 Acta Phys. Sin. 64 175201 (in Chinese)
[4] Moon J, Kim K, Lin M and Chung C 2016 Phys. Plasmas 23 113504
[5] Kim K, Kim K, Hong Y, Moon H and Chung C 2019 Phys. Plasmas 26 123516
[6] Pan D, Jiang G, Wang G, Ma H, Liu L and Luo J 2014 J. Exper. Fluid Mech. 28 72 (in Chinese)
[7] Fujita K, Mizuno M, Ishida K, and Ito T 2008 J. Thermophys. Heat Transfer 22 685
[8] Ivanov D V and Zverev S G 2017 IEEE T. Plasma Sci. 45 3125
[9] Degrez G, Abeele D V, Barbante P and Bottin B 2004 Int. J. Numer. Method Heat Fluid Flow 14 538
[10] Alavi S and Mostaghimi J 2019 Plasma Chem. Plasma Proc. 39 359
[11] Nam J, Lee M, Seo J and Kim G 2018 J. Korean Phys. Soc. 72 755
[12] Lu B and Feng Q 2018 Phys. Plasmas 25 093510
[13] Sun X Y, Zhang Y R, Chai S, Wang Y N, Chu Y Y and He J X 2020 Chin. Phys. B 29 095203
[14] Sun X Y, Zhang Y R, Li X C and Wang Y N 2017 Chin. Phys. B 26 015201
[15] Gao F, Zhang Y R, Zhao S X, Li X C and Wang Y N 2014 Chin. Phys. B 23 115202
[16] Zhu H, Tong H, Ye G and Chen L 2012 Nucl. Fusion Plasma Phys. 32 199 (in Chinese)
[17] Chen W, Chen L, Liu C, Chen C, Tong H and Zhu H 2019 High Volt. Eng. 45 316 (in Chinese)
[18] Zhao S 2018 Phys. Plasmas 25 033516
[19] Lei F, Li X, Liu D, Liu Y and Zhang S 2019 AIP Adv. 9 085228
[20] Kralkina E A, Rukhadze A A, Pavlov V B, Vavilin K V, Nekliudova P A, Petrov A K and Alexandrov A F 2016 Plasma Sources Sci. T. 25 015016
[21] Yu B W and Girshick S L 1991 J. Appl. Phys. 69 656
[22] Yu, M H, Yamada, K, Takahashi, Y, Liu, K and Zhao T 2016 Phys. Plasmas 23 123523
[23] Xue S, Proulx P and Boulos M I 2003 Plasma Chem. Plasma P. 23 245
[24] Cipullo A, Helber B, Panerai F, Zeni L and Chazot O 2014 J. Thermophys. Heat Transfer 28 381
[25] Vasil'eviskii S A and Kolesnikov A F 2000 Fluid Dynam. 35 769
[26] Sumi T, Fujita K, Kurotaki T, Ito T, Mizuno M and Ishida K 2005 Trans. Jpn. Soc. Aeronaut. Space Sci. 48 40
[27] Abeele D V and Degrez G 2004 Plasma Sources Sci. Technol. 13 680
[28] Gupta R N, Yos J M, Thompson R A and Lee K P 1990 A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K (Washington DC: National Aeronautics and Space Administration) pp. 1-91
[29] Yos J M 1963 Transport properties of nitrogen, hydrogen, oxygen, and air to 30000 K, (Wilmington, Massachusetts: Research and Advanced Development Division, AVCO Corporation) pp. 1-71
[30] Curtiss C F and Hirschfelder J O 1949 J. Chem. Phys. 17 550
[31] Devoto R S 1967 Phys. Fluids 10 2105
[32] Yu M, Kihara H, Abe K and Takahashi Y 2015 J. Korean Phys. Soc. 66 1833
[33] Ghorui S and Das A K 2013 Phys. Plasmas 20 093504
[34] Yu M, Wang W, Yao J and Zheng B 2018 J. Korean Phys. Soc. 73 1519
[35] Park C 1990 Nonequilibrium Hypersonic Aerothermodynamics (New York: Wiley) pp. 1-358
[36] Shima E and Kitamura K 2011 AIAA J. 49 1693
[37] Van Leer B 1979 J. Comput. Phys. 32 101
[38] Van Leer B 1977 J. Comput. Phys. 23 276
[39] Bussing T R A and Murman E M 1988 AIAA J. 26 1070
[40] Jameson A anYoon S 1987 AIAA J. 25 929
[41] Chen X 1990 Int. J. Heat Mass Transfer 33 815
[42] Ivanov D V and Zverev S G 2020 IEEE T. Plasma Sci. 48 338
[43] Takahashi Y, Kihara H and Abe K 2010 J. Thermophys. Heat Transfer 24 31
[1] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[2] Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林). Chin. Phys. B, 2022, 31(1): 014101.
[3] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[4] Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas
Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2021, 30(6): 065202.
[5] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[6] Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge
Xiang-Yun Lv(吕翔云), Fei Gao(高飞), Quan-Zhi Zhang(张权治), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(4): 045202.
[7] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[8] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[9] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[10] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[11] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[12] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[13] Pressure induced magnetic and semiconductor-metal phase transitions in Cr2MoO6
San-Dong Guo(郭三栋). Chin. Phys. B, 2016, 25(5): 057104.
[14] Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature
Liuan Li(李柳暗), Jiaqi Zhang(张家琦), Yang Liu(刘扬), Jin-Ping Ao(敖金平). Chin. Phys. B, 2016, 25(3): 038503.
[15] Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating
Ling-Zhi Huang(黄凌志), Yong Xiao(肖勇), Ji-Hong Wen(温激鸿), Hai-Bin Yang(杨海滨), Xi-Sen Wen(温熙森). Chin. Phys. B, 2016, 25(2): 024302.
No Suggested Reading articles found!