Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064215    DOI: 10.1088/1674-1056/abd7e5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Surface plasmon polaritons induced reduced hacking

Bakhtawar, Muhammad Haneef, and Humayun Khan
Lab of Theoretical Physics, Hazara University Mansehra, 21300 KP, Pakistan
Abstract  There is always need for secure transmission of information and simultaneously compact-size photonic circuits. This can be achieved if surface plasmon-polaritons (SPPs) are used as source of information, and the reduced hacking as the transmission phenomenon. In this article, an SPP-based reduced hacking scheme is presented at interface between atomic medium and metallic conductor. The SPP propagation is manipulated with conductivity of the metal. The delay or advance of the SPP is found to create nanosecond time gap which can be used for storing and sending the information safely. The reduced hacking is further modified with conductivity of the metal and the control parameters of the atomic medium.
Keywords:  surface plasmons      coherent control of atomic interactions with photons      reduced hacking      surface conductivity  
Received:  02 September 2020      Revised:  24 December 2020      Accepted manuscript online:  04 January 2021
PACS:  42.50.-p (Quantum optics)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
Corresponding Authors:  Muhammad Haneef     E-mail:  haneef.theoretician@gmail.com

Cite this article: 

Bakhtawar, Muhammad Haneef, and Humayun Khan Surface plasmon polaritons induced reduced hacking 2021 Chin. Phys. B 30 064215

[1] McCall M 2013 Contemp. Phys. 54 273
[2] Merali Z 2013 Nature
[3] McCall M W, Favaro A, Kinsler P and Boardman A 2010 J. Opt. 13 024003
[4] Fridman M, Farsi A, Okawachi Y and Gaeta A 2012 Nature 481 62
[5] Bony P Y, Guasoni M, Morin P, Sugny D, Picozzi A, R Jauslin H, Pitois S and Fatome J 2014 Nat. Commun. 5 4678
[6] Boyd R and Shi Z 2012 Nature 481 35
[7] Lukens J M, Leaird D and M Weiner A 2013 Nature 498 205
[8] Lukens J M, Metcalf A J, Leaird D E and Weiner A M 2014 Optica 1 372
[9] Li R B, Deng L, Hagley E W, Bienfang J C, Payne M G and Ge M L 2013 Phys. Rev. A 87 023839
[10] Wu K and Wang G P 2013 Opt. Express 21 238
[11] Chremmos I 2014 Opt. Lett. 39 4611
[12] Jabar M S A, Bacha B A and Ahmad I 2015 Laser Physics 25 065405
[13] Maier S A 2007 Plasmonics: Fundamentals and Applications (Berlin: Springer)
[14] Jabar M S A and Bacha B A 2018 J. Opt. 20 12
[15] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[16] Tame M S, McEnery K, Ozdemir S, Lee J, Maier S and Kim M 2013 Nat. Phys. 9 329
[17] Liedberg B, Nylander C and Lunstrom I 1983 Sensors & Actuat. 4 299
[18] Cai W, Genov D A and Shalaev V M 2005 Phys. Rev. B 72 193101
[19] Kurokawa Y and Miyazaki H T 2007 Phys. Rev. B 75 035411
[20] Zeng X, Al-Amri M and Zubairy M S 2014 Phys. Rev. B 90 235418
[21] Zeng X, Fan L and Zubairy M S 2017 Phys. Rev. A 95 053850
[22] Bakhtawar, Haneef M, Bacha B A, Khan H and Atif M 2018 Chin. Phys. B 27 114215
[23] Yao Y, Shen Y, Hao J M and Dai N 2019 Acta Phys. Sin. 68 147802 (in Chinese)
[24] Zhang W J, Gao L, Wei H and Xu H X 2019 Acta Phys. Sin. 68 147302 (in Chinese)
[25] Li P 2019 Acta Phys. Sin. 68 146201 (in Chinese)
[26] Guo Y, Zhang Z, Pu M, Huang Y, Li X, Ma X and Xu M Luo X 2019 Iscience 21 145
[27] He P H, Zhang H C, Gao X X, et al. 2019 Opto-electron Adv. 2 190001
[28] Luo X G 2015 Sci. Chin.-Phys., Mech. Astron. 58 594201
[29] Khan H, Haneef M and Bakhtawar 2018 Chin. Opt. Lett. 17 032701
[30] Shoaib B, Haneef M, Bacha B A, Khan H and Bakhtawar 2019 Commun. Theor. Phys. 71 435
[31] Khan R, Iqbal M, Haneef M, Bacha B A, Khan H, Bakhtawar and Mariam 2019 Laser Phys. 29 045403
[32] Khan H, Haneef M and Bakhtawar 2018 Chin. Phys. B 27 014201
[33] Khan H and Haneef M 2017 Laser Phys. 27 055201
[34] Khan H, Haneef M and Bakhtawar 2019 Chin. Opt. Lett. 17 032701
[35] Din R U, Zeng X D, Ge G Q and Zubairy M S 2019 Opt. Express 27 322
[36] Khan N, Bacha B A, Iqbal A, Rahman A U and Afaq A 2017 Phys. Rev. A 96 013848
[37] Din R U, Badshah F, Ahmad I and Ge G Q 2018 Europhys. Lett. 122 17001
[38] Agarwal G S and Dasgupta S 2004 Phys. Rev. A 70 023802
[39] Sheng J, Yang X, Khadka U and Xiao M 2011 Opt. Express 19 17059
[40] Ahmad S, Ahmad A, Bacha B A, Khan A A, Abdul M and Jabar S 2017 Eur. Phys. J. Plus 132 506
[41] Scully M and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[42] Gustafson S C 1996 Opt. Eng. 35 1513
[1] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[2] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[3] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[4] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[5] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[6] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[7] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[8] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[9] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[10] Diffraction properties of binary graphene sheet arrays
Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国). Chin. Phys. B, 2017, 26(1): 017302.
[11] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[12] Excitation of anti-symmetric coupled spoof SPPs in 3D SIS waveguides based on coupling
Li-li Tian(田莉莉), Yang Chen(陈杨), Jian-long Liu(刘建龙), Kai Guo(郭凯), Ke-ya Zhou(周可雅), Yang Gao(高扬), Shu-tian Liu(刘树田). Chin. Phys. B, 2016, 25(7): 078401.
[13] Compact surface plasmon amplifier in nonlinear hybrid waveguide
Shu-shu Wang(王曙曙), Dan-qing Wang(王丹青), Xiao-peng Hu(胡小鹏), Tao Li(李涛), Shi-ning Zhu(祝世宁). Chin. Phys. B, 2016, 25(7): 077301.
[14] A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index
Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林). Chin. Phys. B, 2016, 25(3): 037303.
[15] Fano resonance and magneto-optical Kerr rotaion in periodic Co/Ni complex plasmonic nanostructure
Le-Yi Chen(陈乐易), Zhi-Xiong Tang(唐志雄), Jin-Long Gao(高锦龙), Dao-Yong Li(李道勇), Cheng-Xin Lei(类成新), Zhen-Zhi Cheng(程振之), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2016, 25(11): 113301.
No Suggested Reading articles found!