Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057505    DOI: 10.1088/1674-1056/abe0c3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of hydrogen plasma implantation on the micro-structure and magnetic properties of hcp-Co8057Fe4Ir16 thin films

Hui Wang(王辉)1, Meng Wu(吴猛)2, Haiping Zhou(周海平)3, Bo Zhang(张博)1, Shixin Hu(胡世欣)1, Tianyong Ma(马天勇)4, Zhiwei Li(李志伟)1,†, Liang Qiao(乔亮)1, Tao Wang(王涛)1,‡, and Fashen Li(李发伸)1
1 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory for Special Functional Materials and Structure Design of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2 Department of Physics, Xiamen University, Xiamen 361005, China;
3 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China;
4 School of Electrical and Information Engineering, North Minzu University, Yinchuan 750021, China
Abstract  We present detailed investigations of structural and static/dynamic magnetic properties of hydrogenated hcp-Co8057Fe4Ir16 soft magnetic thin films. Two different kinds of defects, i.e., destructive and non-destructive, were demonstrated by controlling the negative bias voltage of the hydrogenation process. Our results show that the structure and magnetic properties of our sample can be tuned by the density of the induced defects. These results provide better understanding of the hydrogenation effect and thus can be used in the future for materials processing to meet the requirements of different devices.
Keywords:  soft magnetic thin film      hydrogen plasma implantation      Mössbauer spectroscopy  
Received:  25 November 2020      Revised:  24 January 2021      Accepted manuscript online:  28 January 2021
PACS:  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.50.Ss (Magnetic recording materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704167, 11704317, and 11574122).
Corresponding Authors:  Zhiwei Li, Tao Wang     E-mail:  zweili@lzu.edu.cn;wtao@lzu.edu.cn

Cite this article: 

Hui Wang(王辉), Meng Wu(吴猛), Haiping Zhou(周海平), Bo Zhang(张博), Shixin Hu(胡世欣), Tianyong Ma(马天勇), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), and Fashen Li(李发伸) Effect of hydrogen plasma implantation on the micro-structure and magnetic properties of hcp-Co8057Fe4Ir16 thin films 2021 Chin. Phys. B 30 057505

[1] Lou J, Reed D, Liu M and Sun N X 2009 Appl. Phys. Lett. 94 112508
[2] Liu G X, Cui X X and Dong S X 2010 J. Appl. Phys. 108 094106
[3] Zhang H W, Liu Y L and Zhong Z Y 2001 Vacuum 62 1
[4] Phuoc N N, Xu F and Ong C K 2009 Appl. Phys. Lett. 94 092505
[5] Yamaguchi M, Miyazawa Y, Kaminishi K, Kikuchi H, Yabukami S, Arai K I and Suzuki T 2004 J. Magn. Magn. Mater. 268 170
[6] Feng E, Wang Z K, Du H M, Wei J W, Cao D R, Liu Q F and Wang J B 2014 J. Appl. Phys. 115 17A307
[7] Wang W, Chen Y, Yue G H, Sumiyama K, Hihara T and Peng D L 2009 J. Appl. Phys. 106 013912
[8] Guo X B, Xi L, Li Y, Han X M, Li D, Wang Z and Zuo Y L 2014 Appl. Phys. Lett. 105 072411
[9] Liu S Y, Ma Y H, Chang L, Li G J, Wang J H and Wang Q 2018 Thin Solid Films 651 1
[10] Yao D S, Zhou X Y, Zuo H P and Zhang B M 2008 Appl. Surf. Sci. 254 2556
[11] Liu S H, Hsiao S N, Chen S K and Lee H Y 2015 J. Alloys Compd. 631 15
[12] Mallik S, Mallick S and Bedanta S 2017 J. Magn. Magn. Mater. 428 50
[13] Singh A K and Alagarsamy P 2016 J. Magn. Magn. Mater. 401 1015
[14] Chotibhawaris T, Luangvaranunt T, Jantaratana P and Boonyongmaneerat Y 2018 Intermetallics 93 323
[15] Singh A K and Hsu J H 2017 J. Magn. Magn. Mater. 432 96
[16] Ma T Y, Jiao J Y, Li Z W, Qiao L, Wang T and Li F S 2017 J. Magn. Magn. Mater. 444 119
[17] Yoon H, Choi M, Lim T W, Kwon H, Ihm K, Kim J K, Choi S Y and Son J 2016 Nat. Mater. 15 1113
[18] Jo M, Lee H J, Oh C, Yoon H, Jo J Y and Son J 2018 Adv. Funct. Mater. 28 1802003
[19] Hope M A, Griffit K J, Cui B, Gao F, Dutton S E, Parkin S S P and Grey C P 2018 J. Am. Chem. Soc. 140 16685
[20] Wu M, Chen S Q, Huang C W, Ye X, Zhou H P, Huang X C, Zhang K H L, Yan W S, Zhang L H, Kim K, Du Y, Chembers S, Zheng J C and Wang H Q 2020 Front. Phys. 15 13601
[21] Smith K A, Savva A I, Deng C J, Wharry J P, Hwang S, Su D, Wang Y Q, Gong J, Xu T, Butt D P and Xiong H 2017 J. Mater. Chem. A 5 11815
[22] Lu N P, Zhang P F, Zhang Q H, et al. 2017 Nature 546 124
[23] Ho K Y, Chen W Z and Gui R L 1990 IEEE Trans. Magn. 26 1424
[24] Zamani A, Hallen A, Nordblad P, Andersson G, Hjorvarsson B and Jonsson P E 2013 J. Magn. Magn. Mater. 346 138
[25] Pourarian F, Wallace W E and Malik S K 1982 J. Less-Common Met. 83 95
[26] Trinkaus T, Hollander B, Rongen S, Mantl S, Herzog H J, Kuchenbecker J and Hackbarth T 2000 Appl. Phys. Lett. 76 3552
[27] Barcz A, Kozubal M, Jakiela R, Ratajczak J, Dyczewski J, Golaszewska K, Wojciechowski T and Celler G K 2014 J. Appl. Phys. 115 223710
[28] Tong Q Y, Gutjahr K, Hopfe S, Gösele U and Lee T H 1997 Appl. Phys. Lett. 70 1390
[29] Ma T Y, Jiao J Y, Li Z W, Qiao L, Wang T and Li F S 2018 Appl. Surf. Sci. 457 598
[30] Zhang S, Xu F, Ma X M, Wang T, Tan G G and Li F S 2014 Appl. Surf. Sci. 299 81
[31] Luo Z, Ma T Y, Li Y, Li Z W, Wang T and Li F S 2019 J. Supercond. Nov. Magn. 32 3957
[32] Ma T Y, Luo Z, Li Z W, Qiao L, Wang T and Li F S 2019 Chin. Phys. B 28 057505
[33] Phuoc N N, Xu F and Ong C K 2009 J. Appl. Phys. 105 113926
[34] Ge S H, Yao D S, Yamaguchi M, Yang X L, Zuo H P, Ishii T, Zhou D and Li F S 2007 J. Phys. D: Appl. Phys. 40 3660
[35] Xue D S, Li F S, Fan X L and Wen F S 2008 Chin. Phys. Lett. 25 4120
[36] Kambershy V 1970 Can. J. Phys. 48 2906
[37] Arias R and Mills D L 1999 Phys. Rev. B 60 7395
[38] Chappert C, Dang K L, Beauvillain P, Hurdequint H and Renard D 1986 Phys. Rev. B 34 3192
[39] Oliveira L S, Cunha J B M, Spada E R and Hallouche B 2007 Appl. Surf. Sci. 254 347
[40] Cohen N S, Pankhurst Q A and Barquin L F 1999 J. Phys.: Condens. Matter 11 8839
[41] Hesse J and Rubartsch A 1974 J. Phys. E: Sci. Instrum. 7 526
[42] Klencsar Z, Kuzmann E and Vertes A 1996 J. Radioanal. Nucl. Chem. 210 105
[43] Preston R S, Hanna S S and Heberle J 1962 Phys. Rev. 128 2207
[44] Wang L M, Wang S X, Ewing R C, Meldrum A, Birtcher R C, Provencio P N, Weber W J and Matzke H 2000 Mater. Sci. Eng. A 286 72
[45] Jiao Z and Was G S 2011 Acta Mater. 59 1220
[46] Kersten M 1956 Z. Angew. Phys. 8 496
[1] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[2] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[3] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[4] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[5] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[6] Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures
Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2021, 30(12): 127302.
[7] Spin orbit torques in Pt-based heterostructures with van der Waals interface
Qian Chen(陈倩), Weiming Lv(吕伟明), Shangkun Li(李尚坤), Wenxing Lv(吕文星), Jialin Cai(蔡佳林), Yonghui Zhu(朱永慧), Jiachen Wang(王佳晨), Rongxin Li(李荣鑫), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2021, 30(9): 097506.
[8] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[9] Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction
Qiuyang Li(李求洋), Penghe Zhang(张蓬鹤), Haotian Li(李浩天), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Chunjie Yan(晏春杰), Liyuan Li(李丽媛), Yongbing Xu(徐永兵), Weixin Zhang(张卫欣), Bo Liu(刘波), Hao Meng(孟浩), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2021, 30(4): 047504.
[10] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[11] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[12] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[13] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[14] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[15] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
No Suggested Reading articles found!