Special Issue:
SPECIAL TOPIC — Two-dimensional magnetic materials and devices
|
SPECIAL TOPIC—Two-dimensional magnetic materials and devices |
Prev
Next
|
|
|
Spin orbit torques in Pt-based heterostructures with van der Waals interface |
Qian Chen(陈倩)1, Weiming Lv(吕伟明)1,2, Shangkun Li(李尚坤)1, Wenxing Lv(吕文星)1,3, Jialin Cai(蔡佳林)1,2, Yonghui Zhu(朱永慧)1, Jiachen Wang(王佳晨)1, Rongxin Li(李荣鑫)1, Baoshun Zhang(张宝顺)1, and Zhongming Zeng(曾中明)1,2,† |
1 Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; 2 Nanchang Nano-Devices and Technologies Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang 330200, China; 3 Physics Laboratory, Industrial Training Center, Shenzhen Polytechnic, Shenzhen 518055, China |
|
|
Abstract Spin orbit torques (SOTs) in ferromagnet/heavy-metal heterostructures have provided great opportunities for efficient manipulation of spintronic devices. However, deterministically field-free switching of perpendicular magnetization with SOTs is forbidden because of the global two-fold rotational symmetry in conventional heavy-metal such as Pt. Here, we engineer the interface of Pt/Ni heterostructures by inserting a monolayer MoTe2 with low crystal symmetry. It is demonstrated that the spin orbit efficiency, as well as the out-of-plane magnetic anisotropy and the Gilbert damping of Ni are enhanced, due to the effect of orbital hybridization and the increased spin scatting at the interface induced by MoTe2. Particularly, an out-of-plane damping-like torque is observed when the current is applied perpendicular to the mirror plane of the MoTe2 crystal, which is attributed to the interfacial inversion symmetry breaking of the system. Our work provides an effective route for engineering the SOT in Pt-based heterostructures, and offers potential opportunities for van der Waals interfaces in spintronic devices.
|
Received: 26 April 2021
Revised: 03 June 2021
Accepted manuscript online: 08 June 2021
|
PACS:
|
75.70.Tj
|
(Spin-orbit effects)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51732010, 51802341, and 12004415), the China Postdoctoral Science Foundation (Grant Nos. 2020M671592, 2019M661965), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200255). |
Corresponding Authors:
Zhongming Zeng
E-mail: zmzeng2012@sinano.ac.cn
|
Cite this article:
Qian Chen(陈倩), Weiming Lv(吕伟明), Shangkun Li(李尚坤), Wenxing Lv(吕文星), Jialin Cai(蔡佳林), Yonghui Zhu(朱永慧), Jiachen Wang(王佳晨), Rongxin Li(李荣鑫), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明) Spin orbit torques in Pt-based heterostructures with van der Waals interface 2021 Chin. Phys. B 30 097506
|
[1] Han X, Wang X, Wan C, Yu G and Lv X 2021 Appl. Phys. Lett. 118 120502 [2] Cao Y, Xing G, Lin H, Zhang N, Zheng H and Wang K 2020 iScience 23 101614 [3] Zheng Z, Zhu D, Zhang K, Feng X, He Y, Chen L, Zhang Z, Liu D, Zhang Y, Amiri P and Zhao W 2020 Chin. Phys. B 29 078505 [4] Qiu X, Legrand W, He P, Wu Y, Yu J, Ramaswamy R, Manchon A and Yang H 2016 Phys. Rev. Lett. 117 217206 [5] Razavi A, Wu H, Shao Q, Fang C, Dai B, Wong K, Han X, Yu G and Wang K 2020 Nano Lett. 20 3703 [6] Shu X, Zhou J, Liu L, Lin W, Zhou C, Chen S, Xie Q, Ren L, Yu X, Yang H and Chen J 2020 Phys. Rev. Appl. 14 054056 [7] Liu Y and Shao Q 2020 ACS Nano 14 9389 [8] Kahn E, Liu M, Zhang T, Liu H, Fujisawa K, Bepete G, Ajayan P and Terrones M 2020 Mater. Today 37 74 [9] Macneill D, Stiehl G, Guimaraes M, Buhrman R, Park J and Ralph D 2017 Nat. Phys. 13 300 [10] Macneill D, Stiehl G, Guimaraes M, Reynolds N, Buhrman R and Ralph D 2017 Phys. Rev. B. 96 054450 [11] Stiehl G, Li R, Gupta V, Baggari I, Jiang S, Xie H, Kourkoutis L, Mak K, Shan J, Buhrman R and Ralph D 2019 Phys. Rev. B 100 184402 [12] Debashis P, Hung T and Chen Z 2020 npj 2D Mater. Appl. 4 18 [13] Xie Q, Lin W, Yang B, Shu X, Chen S, Liu L, Yu X, Breese M, Zhou T, Yang M, Zhang Z, Wang S, Yang H, Chai J, Han X and Chen J 2019 Adv. Mater. 31 1900776 [14] Song P, Hsu C, Vignale G, Zhao M, Liu J, Deng Y, Fu W, Liu Y, Zhang Y, Pereira V and Loh K 2020 Nat. Mater. 19 292 [15] Huang Y, Pan Y, Yang R, et al. 2020 Nat. Commun. 11 2453 [16] Kan M, Nam H, Lee Y and Sun Q 2015 Phys. Chem. Chem. Phys. 17 14866 [17] Wang J, Luo X, Li S, Verzhbitskiy I, Zhao W, Wang S, Quek S and Eda G 2017 Adv. Funct. Mater. 27 1604799 [18] Liu L, Moriyama T, Ralph D and Buhrman R 2011 Phys. Rev. Lett. 106 036601 [19] Yang W, Wei J, Wan C, Xing Y, Yan Z, Wang X, Fang C, Guo C, Yu G and Han X 2020 Phys. Rev. B 101 064412 [20] Herring C and Kittel C 1951 Phys. Rev. 81 869 [21] Kageyama Y, Tazaki Y, An H, Harumoto T, Gao T, Shi J and Ando K 2019 Sci Adv. 5 eaax4278 [22] Husain S, Chen X, Gupta R, Behera N, Kumar P, Edvinsson T, García-Sanchez F, Brucas R, Chaudhary S, Sanyal B, Svedlindh P and Kumar A 2020 Nano Lett. 20 6372 [23] Bose A, Singh H, Kushwaha V, Bhuktare S, Dutta S and Tulapurkar A 2018 Phys. Rev. Appl. 9 014022 [24] Hayashi H, Musha A, Sakimura H and Ando K 2020 Phys. Rev. Research 3 013042 [25] Novakov S, Jariwala B, Vu N, Kozhakhmetov A, Robinson J and Heron J 2021 ACS Appl. Mater. Interfaces. 13 13744 [26] Zhao Y, Yang G, Dong B, Wang S, Wang C, Sun Y, Zhang J and Yu G 2016 Chin. Phys. B 25 077501 [27] Lee W, Park N, Kim G, Kang M, Choi J, Choi K, Jang H, Saitoh E and Lee S 2021 Nano Lett. 21 189 [28] Lee W, Kang M, Kim G, Park N, Choi K, Le C, Rashid M, Saitoh E, Kim Y and Lee S 2021 ACS Appl. Mater. Interfaces 13 15783 [29] Yin Y, Pan F, Ahlberg M, Ranjbar M, Durrenfeld P, Houshang A, Haidar M, Bergqvist M, Zhai Y, Dumas R, Delin A and Akerman J 2015 Phys. Rev. B 92 024427 [30] Tserkovnyak Y, Brataas A and Bauer G 2002 Phys. Rev. Lett. 88 117601 [31] Tserkovnyak Y, Brataas A and Bauer G 2002 Phys. Rev. B 66 224403 [32] Garello K, Miron I, Avci C, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat. Nanotechnol. 8 587 [33] Yu G, Upadhyaya P, Fan Y, Alzate J, Jiang W, Wong K, Takei S, Bender S, Chang L, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P and Wang K 2014 Nat. Nanotechnol. 9 548 [34] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H and Wang K 2017 Nat. Mater. 16 712 [35] Cao Y, Sheng Y, Edmonds K, Ji Y, Zheng H and Wang K 2020 Adv. Mater. 32 1907929 [36] Lau Y, Betto D, Rode K, Coey J and Stamenov P 2016 Nat. Nanotechnol. 11 758 [37] Fukami S, Zhang C, Gupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|