Special Issue:
Virtual Special Topic — Magnetism and Magnetic Materials
|
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Computational study of inverse ferrite spinels |
A EL Maazouzi1, R Masrour1, A Jabar1, M Hamedoun2 |
1 Laboratory of Materials, Processes, Environment and Quality, Cadi Ayyad University, National School of Applied Sciences, Sidi Bouzid, Safi 63 46000, Morocco;
2 Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat, Morocco |
|
|
Abstract The magnetic properties of inverse ferrite (Fe3+) [Fe3+Co2+]O42-,(Fe3+) [Fe3+Cu2+]O42-,(Fe3+) [Fe3+Fe2+]O42-, and (Fe3+) [Fe3+Ni2+]O42- spinels have been studied using Monte Carlo simulation. We have also calculated the critical and Curie Weiss temperatures from the thermal magnetizations and inverse of magnetic susceptibilities for each system. Magnetic hysteresis cycles have been found for the four systems. Finally, we found the critical exponents associated with magnetization, magnetic susceptibility, and external magnetic field. Our results of critical and Curie Weiss temperatures are similar to those obtained by experiment results. The critical exponents are similar to those of known 3D-Ising model.
|
Received: 06 February 2019
Revised: 05 March 2019
Accepted manuscript online:
|
PACS:
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.40.Mg
|
(Numerical simulation studies)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
Corresponding Authors:
A EL Maazouzi
E-mail: rachidmasrour@hotmail.com
|
Cite this article:
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun Computational study of inverse ferrite spinels 2019 Chin. Phys. B 28 057504
|
[1] |
Tamayo H S, García K E and Barrero C A 2019 J. Magn. Magn. Mater. 471 242
|
[2] |
Ramos A V, Guittet M J, Moussy J B, Mattana R, Deranlot C, Petroff F and Gatel C 2007 Appl. Phys. Lett. 91 122107
|
[3] |
Zheng H, Wang J, Lofl, S E, Ma Z, Ardabili L M, Zhao T, Riba L S, Shinde S R, Ogale S B, Bai F, Viehl, D, Jia Y, Schlom D G, Wuttig M, Roytburd A and Ramesh R 2004 Science 303 661
|
[4] |
Wu Y, Wan J G, Liu J M and Wang G 2010 Appl. Phys. Lett. 96 152902
|
[5] |
Kodama R H, Berkowitz A E, McNiff Jr E J and Foner S 1997 J. Appl. Phys. 81 5552
|
[6] |
Wang J, Luo J, Fan Q, Suzuki M, Suzuki I S, Engelhard M H, Lin Y, Kim N, Wang J Q and Zhong C J 2005 J. Phys. Chem. B 109 21593
|
[7] |
Casu A, Casula M F, Corrias A, Falqui A, Loche D and Marras S 2007 J. Phys. Chem. C 111 916
|
[8] |
Murillo N, Ochoteco E, Alesanco Y, Pomposo J A, Rodriguez J, Gonzalez J, Val J J D, Gonzalez J M, Brtel M R and Lopez A R A 2004 Nanotechnology 15 S322
|
[9] |
Zhang Z and Satpathy S 1991 Phys. Rev. B 44 13319
|
[10] |
Yanase A and Siratori K 1984 J. Phys. Soc. Jpn. 53 312
|
[11] |
Joshi S, Kumar M, Pandey H, Singh M and Pal P 2018 J. Alloys Compnds. 768 287
|
[12] |
Joshi S, Kumar M, Chhoker S, Srivastava G, Jewariya M and Singh V N 2014 J. Mol. Struct 1076 55
|
[13] |
Ahmed Y M Z, Hessien M M, Rashad M M and Ibrahim I A 2009 J. Magn. Magn. Mater. 321 181
|
[14] |
Ramankutty C G and Sugunan S 2001 Appl. Catal. A 218 39
|
[15] |
Reddy C V G, Manorama S V and Rao V 1999 J. Sens. Actuators B: Chemical. 55 90
|
[16] |
Yuan J J, Zhao Q, Xu Y S, Liu Z G, Du X B and Wen G H 2009 J. Magn. Magn. Mater. 321 2795
|
[17] |
Wang J, Li J, Li X, Bao X and Gao X 2018 J. Magn. Magn. Mater. 462 53
|
[18] |
Huang Y L, Fan W B, Hou Y H, Guo K X, Ouyang Y F and Liu Z W 2017 J. Magn. Magn. Mater. 429 263
|
[19] |
Mirzaee Sh, shayesteh S F, Mahdavifar S and Hekmatara S H 2015 J. Magn. Magn. Mater. 393 1
|
[20] |
Masrour R, Hlil E K, Hamedoun M, Benyoussef A, Mounkachi O and El Moussaoui H 2015 J. Magn. Magn. Mater. 378 37
|
[21] |
Salmi S, Masrour R, El Grini A, Bouslykhane K, Hourmatallah A, Benzakour N and Hamedoun M 2018 J. Cluster Sci. 29 493
|
[22] |
Masrour R, Hamedoun M and Benyoussef A 2011 Chem. Phys. Lett. 513 280
|
[23] |
Zhang X L, Liu Z F and Liu W M 2013 Sci. Rep. 3 2908
|
[24] |
Ji A C, Xie X C and Liu W M 2007 Phys. Rev. Lett. 99 183602
|
[25] |
He P B and Liu W M 2005 Phys. Rev. B 72 064410
|
[26] |
Srivastava C M, Srinivasan G and Nanadikar N G 1979 Phys. Rev. B 19 499
|
[27] |
Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 J. Chem. Phys. 21 1087
|
[28] |
Smit J and Wijn H P J 1959 Ferrites p. 143 (New York: Wiley)
|
[29] |
Benenson W, Harris J W, Stöcker H and Lutz H 2002 Handbook of Physics (Berlin: Springer-Verlag)
|
[30] |
Bercoff P G and Bertorello H R 1997 J. Magn. Magn. Mater. 169 314
|
[31] |
Goldner L S and Ahlers G 1992 Phys. Rev. B 45 13129
|
[32] |
Le Guillou J C and Zinn-Justin J 1985 J. Phys. Lett. 46 137
|
[33] |
Baillie C F, Gupta R, Hawick K A and Pawley G S 1992 Phys. Rev. B 45 10438
|
[34] |
Ferrenberg, A M and Landau D P 1991 Phys. Rev. B 44 5081
|
[35] |
Adler J 1983 J. Phys. A 16 3585
|
[36] |
Baker G A J, Nickel B G and Meiron D I 1978 Phys. Rev. B 17 1365
|
[37] |
George M J and Rehr J 1984 Phys. Rev. Lett. 53 2063
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|