|
|
Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure |
Yanchong Zhao(赵岩翀)1,2, Tao Bo(薄涛)1,3, Luojun Du(杜罗军)4, Jinpeng Tian(田金朋)1,2, Xiaomei Li(李晓梅)1,2, Kenji Watanabe5, Takashi Taniguchi6, Rong Yang(杨蓉)1,3,7, Dongxia Shi(时东霞)1,2,7,‡, Sheng Meng(孟胜)1,2,3, Wei Yang(杨威)1,2,3,7,§, and Guangyu Zhang(张广宇)1,2,3,7,¶ |
1 Beijing National Laboratory for Condensed Matter Physics;Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Finland; 5 Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; 6 International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; 7 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China |
|
|
Abstract Transition metal dichalcogenides (TMDs), being valley selectively, are an ideal system hosting excitons. Stacking TMDs together to form heterostructure offers an exciting platform to engineer new optical and electronic properties in solid-state systems. However, due to the limited accuracy and repetitiveness of sample preparation, the effects of interlayer coupling on the electronic and excitonic properties have not been systematically investigated. In this report, we study the photoluminescence spectra of bilayer-bilayer MoS2/WS2 heterostructure with a type Ⅱ band alignment. We demonstrate that thermal annealing can increase interlayer coupling in the van der Waals heterostructures, and after thermally induced band hybridization such heterostructure behaves more like an artificial new solid, rather than just the combination of two individual TMD components. We also carry out experimental and theoretical studies of the electric controllable direct and indirect infrared interlayer excitons in such system. Our study reveals the impact of interlayer coupling on interlayer excitons and will shed light on the understanding and engineering of layer-controlled spin-valley configuration in twisted van der Waals heterostructures.
|
Received: 03 March 2021
Revised: 12 March 2021
Accepted manuscript online: 16 March 2021
|
PACS:
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309604), the National Natural Science Foundation of China (Grant Nos. 11834017, 61888102, and 12074413), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB33000000), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0101340001), and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G11). |
Corresponding Authors:
Dongxia Shi, Wei Yang, Guangyu Zhang
E-mail: dxshi@aphy.iphy.ac.cn;wei.yang@iphy.ac.cn;gyzhang@iphy.ac.cn
|
Cite this article:
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇) Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure 2021 Chin. Phys. B 30 057801
|
[1] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 [2] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [3] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490 [4] Zhu B, Zeng H, Dai J, Gong Z and Cui X 2014 Proc. Natl. Acad. Sci. USA 111 11606 [5] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111 [6] Terrones H, López-Urías F and Terrones M 2013 Sci. Rep. 3 1 [7] Kośmider K and Fernández-Rossier J 2013 Phys. Rev. B 87 075451 [8] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y and Wang F 2014 Nat. Nanotechnol. 9 682 [9] Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G and Ghimire N J 2015 Nat. Commun. 6 1 [10] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T and Kaxiras E 2018 Nature 556 80 [11] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [12] Yu H, Wang Y, Tong Q, Xu X and Yao W 2015 Phys. Rev. Lett. 115 187002 [13] Yu H, Liu G, Tang J, Xu X and Yao W 2017 Sci. Adv. 3 e1701696 [14] Okada M, Kutana A, Kureishi Y, Kobayashi Y, Saito Y, Saito T, Watanabe K, Taniguchi T, Gupta S and Miyata Y 2018 ACS Nano 12 2498 [15] Jin C, Regan E C, Yan A, Utama M I B, Wang D, Zhao S, Qin Y, Yang S, Zheng Z and Shi S 2019 Nature 567 76 [16] Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J and Singh A 2019 Nature 567 71 [17] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X 2019 Nature 567 66 [18] Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J and Sohn J I 2019 Nature 567 81 [19] Rivera P, Yu H, Seyler K L, Wilson N P, Yao W and Xu X 2018 Nat. Nanotechnol. 13 1004 [20] Kiemle J, Sigger F, Lorke M, Miller B, Watanabe K, Taniguchi T, Holleitner A and Wurstbauer U 2020 Phys. Rev. B 101 121404 [21] Karni O, Barré E, Lau S C, Gillen R, Ma E Y, Kim B, Watanabe K, Taniguchi T, Maultzsch J and Barmak K 2019 Phys. Rev. Lett. 123 247402 [22] Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C and Seifert G 2018 Nat. Phys. 14 801 [23] Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Boggild P and Booth T J 2016 Nat. Commun. 7 11894 [24] Zomer P J, Guimarães M H D, Brant J C, Tombros N and van Wees B J 2014 Appl. Phys. Lett. 105 013101 [25] Wang D, Chen G, Li C, Cheng M, Yang W, Wu S, Xie G, Zhang J, Zhao J and Lu X 2016 Phys. Rev. Lett. 116 126101 [26] Cheiwchanchamnangij T and Lambrecht W R L 2012 Phys. Rev. B 85 205302 [27] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791 [28] Zhao W, Ribeiro R M, Toh M, Carvalho A, Kloc C, Castro Neto A H and Eda G 2013 Nano Lett. 13 5627 [29] Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1984 Phys. Rev. Lett. 53 2173 [30] Wilson N R, Nguyen P V, Seyler K, Rivera P, Marsden A J, Laker Z P, Constantinescu G C, Kandyba V, Barinov A, Hine N D, Xu X and Cobden D H 2017 Sci. Adv. 3 e1601832 [31] Van der Donck M and Peeters F M 2018 Phys. Rev. B 98 115104 [32] Yu H, Liu G B and Yao W 2018 2D Mater. 5 035021 [33] Zhu B, Zeng H, Dai J, Gong Z and Cui X 2014 Proc. Natl. Acad. Sci. USA 111 11606 [34] Jones A M, Yu H, Ross J S, Klement P, Ghimire N J, Yan J, Mandrus D G, Yao W and Xu X 2014 Nat. Phys. 10 130 [35] Wang G, Marie X, Bouet L, Vidal M, Balocchi A, Amand T, Lagarde D and Urbaszek B 2014 Appl. Phys. Lett. 105 182105 [36] Cheng Y, Huang C, Hong H, Zhao Z and Liu K 2019 Chin. Phys. B 28 107304 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|