Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057801    DOI: 10.1088/1674-1056/abeee3
RAPID COMMUNICATION Prev   Next  

Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure

Yanchong Zhao(赵岩翀)1,2, Tao Bo(薄涛)1,3, Luojun Du(杜罗军)4, Jinpeng Tian(田金朋)1,2, Xiaomei Li(李晓梅)1,2, Kenji Watanabe5, Takashi Taniguchi6, Rong Yang(杨蓉)1,3,7, Dongxia Shi(时东霞)1,2,7,‡, Sheng Meng(孟胜)1,2,3, Wei Yang(杨威)1,2,3,7,§, and Guangyu Zhang(张广宇)1,2,3,7,¶
1 Beijing National Laboratory for Condensed Matter Physics;Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Finland;
5 Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan;
6 International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan;
7 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China
Abstract  Transition metal dichalcogenides (TMDs), being valley selectively, are an ideal system hosting excitons. Stacking TMDs together to form heterostructure offers an exciting platform to engineer new optical and electronic properties in solid-state systems. However, due to the limited accuracy and repetitiveness of sample preparation, the effects of interlayer coupling on the electronic and excitonic properties have not been systematically investigated. In this report, we study the photoluminescence spectra of bilayer-bilayer MoS2/WS2 heterostructure with a type Ⅱ band alignment. We demonstrate that thermal annealing can increase interlayer coupling in the van der Waals heterostructures, and after thermally induced band hybridization such heterostructure behaves more like an artificial new solid, rather than just the combination of two individual TMD components. We also carry out experimental and theoretical studies of the electric controllable direct and indirect infrared interlayer excitons in such system. Our study reveals the impact of interlayer coupling on interlayer excitons and will shed light on the understanding and engineering of layer-controlled spin-valley configuration in twisted van der Waals heterostructures.
Keywords:  two-dimensional materials      transition metal dichalcogenides (TMDs) heterostructure      band hybridization      interlayer exciton  
Received:  03 March 2021      Revised:  12 March 2021      Accepted manuscript online:  16 March 2021
PACS:  78.66.-w (Optical properties of specific thin films)  
  73.40.-c (Electronic transport in interface structures)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309604), the National Natural Science Foundation of China (Grant Nos. 11834017, 61888102, and 12074413), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB33000000), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0101340001), and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G11).
Corresponding Authors:  Dongxia Shi, Wei Yang, Guangyu Zhang     E-mail:  dxshi@aphy.iphy.ac.cn;wei.yang@iphy.ac.cn;gyzhang@iphy.ac.cn

Cite this article: 

Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇) Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure 2021 Chin. Phys. B 30 057801

[1] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[2] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[3] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[4] Zhu B, Zeng H, Dai J, Gong Z and Cui X 2014 Proc. Natl. Acad. Sci. USA 111 11606
[5] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111
[6] Terrones H, López-Urías F and Terrones M 2013 Sci. Rep. 3 1
[7] Kośmider K and Fernández-Rossier J 2013 Phys. Rev. B 87 075451
[8] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y and Wang F 2014 Nat. Nanotechnol. 9 682
[9] Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G and Ghimire N J 2015 Nat. Commun. 6 1
[10] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T and Kaxiras E 2018 Nature 556 80
[11] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[12] Yu H, Wang Y, Tong Q, Xu X and Yao W 2015 Phys. Rev. Lett. 115 187002
[13] Yu H, Liu G, Tang J, Xu X and Yao W 2017 Sci. Adv. 3 e1701696
[14] Okada M, Kutana A, Kureishi Y, Kobayashi Y, Saito Y, Saito T, Watanabe K, Taniguchi T, Gupta S and Miyata Y 2018 ACS Nano 12 2498
[15] Jin C, Regan E C, Yan A, Utama M I B, Wang D, Zhao S, Qin Y, Yang S, Zheng Z and Shi S 2019 Nature 567 76
[16] Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J and Singh A 2019 Nature 567 71
[17] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X 2019 Nature 567 66
[18] Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J and Sohn J I 2019 Nature 567 81
[19] Rivera P, Yu H, Seyler K L, Wilson N P, Yao W and Xu X 2018 Nat. Nanotechnol. 13 1004
[20] Kiemle J, Sigger F, Lorke M, Miller B, Watanabe K, Taniguchi T, Holleitner A and Wurstbauer U 2020 Phys. Rev. B 101 121404
[21] Karni O, Barré E, Lau S C, Gillen R, Ma E Y, Kim B, Watanabe K, Taniguchi T, Maultzsch J and Barmak K 2019 Phys. Rev. Lett. 123 247402
[22] Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C and Seifert G 2018 Nat. Phys. 14 801
[23] Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Boggild P and Booth T J 2016 Nat. Commun. 7 11894
[24] Zomer P J, Guimarães M H D, Brant J C, Tombros N and van Wees B J 2014 Appl. Phys. Lett. 105 013101
[25] Wang D, Chen G, Li C, Cheng M, Yang W, Wu S, Xie G, Zhang J, Zhao J and Lu X 2016 Phys. Rev. Lett. 116 126101
[26] Cheiwchanchamnangij T and Lambrecht W R L 2012 Phys. Rev. B 85 205302
[27] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791
[28] Zhao W, Ribeiro R M, Toh M, Carvalho A, Kloc C, Castro Neto A H and Eda G 2013 Nano Lett. 13 5627
[29] Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1984 Phys. Rev. Lett. 53 2173
[30] Wilson N R, Nguyen P V, Seyler K, Rivera P, Marsden A J, Laker Z P, Constantinescu G C, Kandyba V, Barinov A, Hine N D, Xu X and Cobden D H 2017 Sci. Adv. 3 e1601832
[31] Van der Donck M and Peeters F M 2018 Phys. Rev. B 98 115104
[32] Yu H, Liu G B and Yao W 2018 2D Mater. 5 035021
[33] Zhu B, Zeng H, Dai J, Gong Z and Cui X 2014 Proc. Natl. Acad. Sci. USA 111 11606
[34] Jones A M, Yu H, Ross J S, Klement P, Ghimire N J, Yan J, Mandrus D G, Yao W and Xu X 2014 Nat. Phys. 10 130
[35] Wang G, Marie X, Bouet L, Vidal M, Balocchi A, Amand T, Lagarde D and Urbaszek B 2014 Appl. Phys. Lett. 105 182105
[36] Cheng Y, Huang C, Hong H, Zhao Z and Liu K 2019 Chin. Phys. B 28 107304
[1] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[2] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[3] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[4] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[5] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[6] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[7] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[8] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[9] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[10] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[11] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[12] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[13] Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure
Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟). Chin. Phys. B, 2020, 29(7): 077304.
[14] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[15] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
No Suggested Reading articles found!