Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047403    DOI: 10.1088/1674-1056/abec37
RAPID COMMUNICATION Prev   Next  

Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs

A F Fang(房爱芳)1, R Zhou(周睿)2,3,†, H Tukada4, J Yang(杨杰)2, Z Deng(邓正)2, X C Wang(望贤成)2, C Q Jin(靳常青)2, and Guo-Qing Zheng(郑国庆)2,4
1 Department of Physics, Beijing Normal University, Beijing 100875, China;
2 Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Department of Physics, Okayama University, Okayama 700-8530, Japan
Abstract  Identifying the uniqueness of FeP-based superconductors may shed new lights on the mechanism of superconductivity in iron-pnictides. Here, we report nuclear magnetic resonance (NMR) studies on LiFeP and LiFeAs which have the same crystal structure but different pnictogen atoms. The NMR spectrum is sensitive to inhomogeneous magnetic fields in the vortex state and can provide the information on the superconducting pairing symmetry through the temperature dependence of London penetration depth ΛL. We find that Λ L saturates below T ∼ 0.2 T c in LiFeAs, where T c is the superconducting transition temperature, indicating nodeless superconducting gaps. Furthermore, by using a two-gaps model, we simulate the temperature dependence of ΛL and obtain the superconducting gaps of LiFeAs, as $\varDelta_1 = 1.2$ kB Tc and $\varDelta_2 = 2.8$ kB T c, in agreement with previous result from spin-lattice relaxation. For LiFeP, in contrast, Λ L does not show any saturation down to T ∼ 0.03 T c, indicating nodes in the superconducting gap function. Finally, we demonstrate that strong spin fluctuations with diffusive characteristics exist in LiFeP, as in some cuprate high temperature superconductors.
Keywords:  iron-based superconductor      nuclear magnetic resonance      superconducting pairing symmetry      spin fluctuations  
Received:  10 January 2021      Revised:  05 February 2021      Accepted manuscript online:  05 March 2021
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.nj (Nuclear magnetic resonance)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
  75.40.Gb (Dynamic properties?)  
Fund: Project supported by the Natioanl Natural Science Foundation of China (Grant Nos. 11904023, 11974405, 11674377, and 11634015), the Fundamental Research Funds for the Central Universities, China (Grant No. 2018NTST22), the National Key R&D Program of China (Grant Nos. 2016YFA0300502 and 2017YFA0302904), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100).
Corresponding Authors:  Corresponding author. E-mail: rzhou@iphy.ac.cn   

Cite this article: 

A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆) Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs 2021 Chin. Phys. B 30 047403

1 Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
2 Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
3 Dai P C 2015 Rev. Mod. Phys. 87 855
4 Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
5 Shen Z X, Dessau D S, Wells B O, King D M, Spicer W E, Arko A J, Marshall D, Lombardo L W, Kapitulnik A, Dickinson P, Doniach S, DiCarlo J, Loeser T and Park C H 1993 Phys. Rev. Lett. 70 1553
6 Wollman D A, Van Harlingen D J, Lee W C, Ginsberg D M and Leggett A J 1993 Phys. Rev. Lett. 71 2134
7 Matano K, Ren Z A, Dong X L, Sun L L, Zhao Z X and Zheng G Q 2008 Europhys. Lett. 83 57001
8 Ding H, Richard P, Nakayama K, Sugawara K, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen G F, Luo J L and Wang N L 2008 Europhys. Lett. 83 47001
9 Li Z, Sun D L, Lin C T, Su Y H, Hu J P and Zheng G Q 2011 Phys. Rev. B 83 140506
10 Ge Q Q, Ye Z R, Xu M, Zhang Y, Jiang J, Xie B P, Song Y, Zhang C L, Dai P C,Feng D L 2013 Phys. Rev. X 3 011020
11 Oka T, Li Z, Kawasaki S, Chen G F, Wang N L and Zheng G Q 2012 Phys. Rev. Lett. 108 047001
12 Zhang Y, Ye Z R, Ge Q Q, Chen F, Jiang J, Xu M, Xie B P and Feng D L 2012 Nat. Phys. 8 371
13 Yoshida T, Ideta S, Shimojima T, et al. \hrefhttps://doi.org/10.1038/srep07292 2014 Sci. Rep. 4 7292
14 Kuroki K, Usui H, Onari S, Arita R,Aoki H 2009 Phys. Rev. B 79 224511
15 Deng Z, Wang X C, Liu Q Q, Zhang S J, Lv Y X, Zhu J L, Yu R C and Jin C Q 2009 Europhys. Lett. 87 37004
16 Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q 2008 Solid State Commun. 148 538
17 Hashimoto K, Kasahara S, Katsumata R, Mizukami Y, Yamashita M, Ikeda H., Terashima T, Carrington A, Matsuda Y and Shibauchi T 2012 Phys. Rev. Lett. 108 047003
18 Oh S, Mounce A M, Lee J A, Halperin W P, Zhang C L, Carr S and Dai P C 2013 Phys. Rev. B 87 174517
19 Wang C G, Li Z, Yang J, Xing L Y, Dai G Y, Wang X C, Jin C Q, Zhou R and Zheng G Q 2018 Phys. Rev. Lett. 121 167004
20 Nakai Y, Iye T, Kitagawa S, Ishida K, Ikeda H, Kasahara S, Shishido H, Shibauchi T, Matsuda Y and Terashima T 2010 Phys. Rev. Lett. 105 107003
21 Ning F L, Ahilan K, Imai T, Sefat A S, McGuire M A, Sales B C, Mandrus D, Cheng P, Shen B and Wen H H 2010 Phys. Rev. Lett. 104 037001
22 Zhou R, Li Z, Yang J, Sun D L, Lin C T and Zheng G Q 2013 Nat. Commun. 4 2265
23 Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R and Matsuda Y 2012 Science 336 1554
24 Man H Y, Guo S L, Zhi G X, Gong X, Wang Q, Ding C, Jin Y K and Ning F L 2014 Europhys. Lett. 105 67005
25 Brandt E H 1988 Phys. Rev. B 37 2349(R)
26 Harshman D R, Brandt E H, Fiory A T, Inui M, Mitzi D B, Schneemeyer L F and Waszczak J V 1993 Phys. Rev. B 47 2905
27 Sonier J E, Brewer J H and Kiefl R F 2000 Rev. Mod. Phys. 72, 769
28 Inosov D S, White J S, Evtushinsky D V, Morozov I V, Cameron A, Stockert U, Zabolotnyy V B, Kim T K, Kordyuk A A, Borisenko S V, Forgan E M, Klingeler R, Park J T, Wurmehl S, Vasiliev A N, Behr G., Dewhurst C D and Hinkov V 2010 Phys. Rev. Lett. 104 187001
29 Carrington A and Manzano F 2003 Physica C: Superconductivity 385 205
30 Li Z, Ooe Y, Wang X C, Liu Q Q, Jin C Q, Ichioka M and Zheng G Q 2010 J. Phys. Soc. Jpn. 79 083702
31 Borisenko S V, V. Zabolotnyy B, Evtushinsky D V, Kim T K, Morozov I V, Yaresko A N, Kordyuk A A, Behr G, Vasiliev A, Follath R and Büchner B 2010 Phys. Rev. Lett. 105 067002
32 Li C, Dai G Y, Cai Y Q, Wang Y, Wang X C, Gao Q, Liu G D, Huang Y, Wang Q Y, Zhang F F, Zhang S J, Yang F, Wang Z M, Peng Q J, Xu Z Y, Jin C Q, Zhao L and Zhou X J 2020 Chin. Phys. B 29 107402
33 Abragam A 1961 The principles of nuclear magnetism (Oxford university press) p. 217
34 Jegli\vc P, Poto\vcnik A, Klanj\vsek M, Bobnar M, Jagodic\vc M, Koch K, Rosner H, Margadonna S, Lv B, Guloy A M and Ar\vcon D 2009 Phys. Rev. B 81 140511
35 Ma L, Zhang J, Chen G F and Yu W Q 2010 Phys. Rev. B 82 180501
36 Hirschfeld P J and Goldenfeld N 1993 Phys. Rev. B 48 4219(R)
37 Dai Y M, Miao H, Xing L Y, Wang X C, Wang P S, Xiao H, Qian T, Richard P, Qiu X G, Yu W, Jin C Q, Wang Z, Johnson P D, Homes C C and Ding H 2015 Phys. Rev. X 5 031035
38 Frachet M, Vinograd I, Zhou R, Benhabib S, Wu S, Mayaffre H, Krämer S, Ramakrishna S K, Reyes A P, Debray J, Kurosawa T, Momono N, Oda M, Komiya S, Ono S, Horio M, Chang J, Proust C, LeBoeuf D and Julien M H 2020 Nat. Phys. 16 1064
39 Benner H and Boucher J P 1990 in Magnetic Properties of Layered Transition Metal Compounds, edited by de Jongh L J (Kluwer academic publishers) p. 323
40 Kambe S, Yasuoka H, Hayashi A and Ueda Y 2008 Phys. Rev. Lett. 73 197
41 Nakai Y, Ishida K, Kamihara Y, Hirano M and Hosono H 2008 Phys. Rev. Lett. 101 077006
42 Julien M H 2008 J. Phys. Soc. Jpn. 77 125002
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[5] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[6] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[7] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[8] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[9] Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2
Tao Xie(谢涛), Chang Liu(刘畅), Tom Fennell, Uwe Stuhr, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2021, 30(12): 127402.
[10] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[11] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[12] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[13] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[14] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
[15] Quantum Monte Carlo study of the dominating pairing symmetry in doped honeycomb lattice
Xingchuan Zhu(朱兴川), Tao Ying(应涛), Huaiming Guo(郭怀明), Shiping Feng(冯世平). Chin. Phys. B, 2019, 28(7): 077401.
No Suggested Reading articles found!