Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳)1, R Zhou(周睿)2,3,†, H Tukada4, J Yang(杨杰)2, Z Deng(邓正)2, X C Wang(望贤成)2, C Q Jin(靳常青)2, and Guo-Qing Zheng(郑国庆)2,4
1 Department of Physics, Beijing Normal University, Beijing 100875, China;
2 Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Department of Physics, Okayama University, Okayama 700-8530, Japan
Abstract Identifying the uniqueness of FeP-based superconductors may shed new lights on the mechanism of superconductivity in iron-pnictides. Here, we report nuclear magnetic resonance (NMR) studies on LiFeP and LiFeAs which have the same crystal structure but different pnictogen atoms. The NMR spectrum is sensitive to inhomogeneous magnetic fields in the vortex state and can provide the information on the superconducting pairing symmetry through the temperature dependence of London penetration depth ΛL. We find that Λ L saturates below T ∼ 0.2 T c in LiFeAs, where T c is the superconducting transition temperature, indicating nodeless superconducting gaps. Furthermore, by using a two-gaps model, we simulate the temperature dependence of ΛL and obtain the superconducting gaps of LiFeAs, as kBTc and kBT c, in agreement with previous result from spin-lattice relaxation. For LiFeP, in contrast, Λ L does not show any saturation down to T ∼ 0.03 T c, indicating nodes in the superconducting gap function. Finally, we demonstrate that strong spin fluctuations with diffusive characteristics exist in LiFeP, as in some cuprate high temperature superconductors.
Fund: Project supported by the Natioanl Natural Science Foundation of China (Grant Nos. 11904023, 11974405, 11674377, and 11634015), the Fundamental Research Funds for the Central Universities, China (Grant No. 2018NTST22), the National Key R&D Program of China (Grant Nos. 2016YFA0300502 and 2017YFA0302904), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100).
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆) Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs 2021 Chin. Phys. B 30 047403
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.