|
|
Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs |
A F Fang(房爱芳)1, R Zhou(周睿)2,3,†, H Tukada4, J Yang(杨杰)2, Z Deng(邓正)2, X C Wang(望贤成)2, C Q Jin(靳常青)2, and Guo-Qing Zheng(郑国庆)2,4 |
1 Department of Physics, Beijing Normal University, Beijing 100875, China;
2 Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Department of Physics, Okayama University, Okayama 700-8530, Japan
|
|
|
Abstract Identifying the uniqueness of FeP-based superconductors may shed new lights on the mechanism of superconductivity in iron-pnictides. Here, we report nuclear magnetic resonance (NMR) studies on LiFeP and LiFeAs which have the same crystal structure but different pnictogen atoms. The NMR spectrum is sensitive to inhomogeneous magnetic fields in the vortex state and can provide the information on the superconducting pairing symmetry through the temperature dependence of London penetration depth ΛL. We find that Λ L saturates below T ∼ 0.2 T c in LiFeAs, where T c is the superconducting transition temperature, indicating nodeless superconducting gaps. Furthermore, by using a two-gaps model, we simulate the temperature dependence of ΛL and obtain the superconducting gaps of LiFeAs, as $\varDelta_1 = 1.2$ kB Tc and $\varDelta_2 = 2.8$ kB T c, in agreement with previous result from spin-lattice relaxation. For LiFeP, in contrast, Λ L does not show any saturation down to T ∼ 0.03 T c, indicating nodes in the superconducting gap function. Finally, we demonstrate that strong spin fluctuations with diffusive characteristics exist in LiFeP, as in some cuprate high temperature superconductors.
|
Received: 10 January 2021
Revised: 05 February 2021
Accepted manuscript online: 05 March 2021
|
PACS:
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
74.25.nj
|
(Nuclear magnetic resonance)
|
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
75.40.Gb
|
(Dynamic properties?)
|
|
Fund: Project supported by the Natioanl Natural Science Foundation of China (Grant Nos. 11904023, 11974405, 11674377, and 11634015), the Fundamental Research Funds for the Central Universities, China (Grant No. 2018NTST22), the National Key R&D Program of China (Grant Nos. 2016YFA0300502 and 2017YFA0302904), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100). |
Corresponding Authors:
†Corresponding author. E-mail: rzhou@iphy.ac.cn
|
Cite this article:
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆) Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs 2021 Chin. Phys. B 30 047403
|
1 Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 2 Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179 3 Dai P C 2015 Rev. Mod. Phys. 87 855 4 Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97 5 Shen Z X, Dessau D S, Wells B O, King D M, Spicer W E, Arko A J, Marshall D, Lombardo L W, Kapitulnik A, Dickinson P, Doniach S, DiCarlo J, Loeser T and Park C H 1993 Phys. Rev. Lett. 70 1553 6 Wollman D A, Van Harlingen D J, Lee W C, Ginsberg D M and Leggett A J 1993 Phys. Rev. Lett. 71 2134 7 Matano K, Ren Z A, Dong X L, Sun L L, Zhao Z X and Zheng G Q 2008 Europhys. Lett. 83 57001 8 Ding H, Richard P, Nakayama K, Sugawara K, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen G F, Luo J L and Wang N L 2008 Europhys. Lett. 83 47001 9 Li Z, Sun D L, Lin C T, Su Y H, Hu J P and Zheng G Q 2011 Phys. Rev. B 83 140506 10 Ge Q Q, Ye Z R, Xu M, Zhang Y, Jiang J, Xie B P, Song Y, Zhang C L, Dai P C,Feng D L 2013 Phys. Rev. X 3 011020 11 Oka T, Li Z, Kawasaki S, Chen G F, Wang N L and Zheng G Q 2012 Phys. Rev. Lett. 108 047001 12 Zhang Y, Ye Z R, Ge Q Q, Chen F, Jiang J, Xu M, Xie B P and Feng D L 2012 Nat. Phys. 8 371 13 Yoshida T, Ideta S, Shimojima T, et al. \hrefhttps://doi.org/10.1038/srep07292 2014 Sci. Rep. 4 7292 14 Kuroki K, Usui H, Onari S, Arita R,Aoki H 2009 Phys. Rev. B 79 224511 15 Deng Z, Wang X C, Liu Q Q, Zhang S J, Lv Y X, Zhu J L, Yu R C and Jin C Q 2009 Europhys. Lett. 87 37004 16 Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q 2008 Solid State Commun. 148 538 17 Hashimoto K, Kasahara S, Katsumata R, Mizukami Y, Yamashita M, Ikeda H., Terashima T, Carrington A, Matsuda Y and Shibauchi T 2012 Phys. Rev. Lett. 108 047003 18 Oh S, Mounce A M, Lee J A, Halperin W P, Zhang C L, Carr S and Dai P C 2013 Phys. Rev. B 87 174517 19 Wang C G, Li Z, Yang J, Xing L Y, Dai G Y, Wang X C, Jin C Q, Zhou R and Zheng G Q 2018 Phys. Rev. Lett. 121 167004 20 Nakai Y, Iye T, Kitagawa S, Ishida K, Ikeda H, Kasahara S, Shishido H, Shibauchi T, Matsuda Y and Terashima T 2010 Phys. Rev. Lett. 105 107003 21 Ning F L, Ahilan K, Imai T, Sefat A S, McGuire M A, Sales B C, Mandrus D, Cheng P, Shen B and Wen H H 2010 Phys. Rev. Lett. 104 037001 22 Zhou R, Li Z, Yang J, Sun D L, Lin C T and Zheng G Q 2013 Nat. Commun. 4 2265 23 Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R and Matsuda Y 2012 Science 336 1554 24 Man H Y, Guo S L, Zhi G X, Gong X, Wang Q, Ding C, Jin Y K and Ning F L 2014 Europhys. Lett. 105 67005 25 Brandt E H 1988 Phys. Rev. B 37 2349(R) 26 Harshman D R, Brandt E H, Fiory A T, Inui M, Mitzi D B, Schneemeyer L F and Waszczak J V 1993 Phys. Rev. B 47 2905 27 Sonier J E, Brewer J H and Kiefl R F 2000 Rev. Mod. Phys. 72, 769 28 Inosov D S, White J S, Evtushinsky D V, Morozov I V, Cameron A, Stockert U, Zabolotnyy V B, Kim T K, Kordyuk A A, Borisenko S V, Forgan E M, Klingeler R, Park J T, Wurmehl S, Vasiliev A N, Behr G., Dewhurst C D and Hinkov V 2010 Phys. Rev. Lett. 104 187001 29 Carrington A and Manzano F 2003 Physica C: Superconductivity 385 205 30 Li Z, Ooe Y, Wang X C, Liu Q Q, Jin C Q, Ichioka M and Zheng G Q 2010 J. Phys. Soc. Jpn. 79 083702 31 Borisenko S V, V. Zabolotnyy B, Evtushinsky D V, Kim T K, Morozov I V, Yaresko A N, Kordyuk A A, Behr G, Vasiliev A, Follath R and Büchner B 2010 Phys. Rev. Lett. 105 067002 32 Li C, Dai G Y, Cai Y Q, Wang Y, Wang X C, Gao Q, Liu G D, Huang Y, Wang Q Y, Zhang F F, Zhang S J, Yang F, Wang Z M, Peng Q J, Xu Z Y, Jin C Q, Zhao L and Zhou X J 2020 Chin. Phys. B 29 107402 33 Abragam A 1961 The principles of nuclear magnetism (Oxford university press) p. 217 34 Jegli\vc P, Poto\vcnik A, Klanj\vsek M, Bobnar M, Jagodic\vc M, Koch K, Rosner H, Margadonna S, Lv B, Guloy A M and Ar\vcon D 2009 Phys. Rev. B 81 140511 35 Ma L, Zhang J, Chen G F and Yu W Q 2010 Phys. Rev. B 82 180501 36 Hirschfeld P J and Goldenfeld N 1993 Phys. Rev. B 48 4219(R) 37 Dai Y M, Miao H, Xing L Y, Wang X C, Wang P S, Xiao H, Qian T, Richard P, Qiu X G, Yu W, Jin C Q, Wang Z, Johnson P D, Homes C C and Ding H 2015 Phys. Rev. X 5 031035 38 Frachet M, Vinograd I, Zhou R, Benhabib S, Wu S, Mayaffre H, Krämer S, Ramakrishna S K, Reyes A P, Debray J, Kurosawa T, Momono N, Oda M, Komiya S, Ono S, Horio M, Chang J, Proust C, LeBoeuf D and Julien M H 2020 Nat. Phys. 16 1064 39 Benner H and Boucher J P 1990 in Magnetic Properties of Layered Transition Metal Compounds, edited by de Jongh L J (Kluwer academic publishers) p. 323 40 Kambe S, Yasuoka H, Hayashi A and Ueda Y 2008 Phys. Rev. Lett. 73 197 41 Nakai Y, Ishida K, Kamihara Y, Hirano M and Hosono H 2008 Phys. Rev. Lett. 101 077006 42 Julien M H 2008 J. Phys. Soc. Jpn. 77 125002 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|