CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy |
Hai Zi(子海)1, Yuan Yao(姚湲)2,†, Ming-Chong He(何明冲)1, Di Ke(可迪)1, Hong-Xing Zhan(詹红星)1, Yu-Qing Zhao(赵宇清)1, Hai-Hu Wen(闻海虎)3, and Cong Ren(任聪)1,‡ |
1 Physics Department, School of Physics and Astronomy, Yunnan University, Kunming 50500, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China; 3 Physics Department, Nanjing University, Nanjing 210093, China
|
|
|
Abstract Low-frequency resistance noise spectroscopy is applied to investigate bulk single crystals of the intercalated iron-selenide KxFe2-ySe2 superconductors with different iron vacancy orders. Based on a generalized fluctuation model, the well-observed resistance hump above 100 K is interpreted as an insulator-metal phase transition with a characteristic transition energy of 0.1-0.6 eV, indicating a highly inhomogeneous energy distribution configuration. In the superconducting transition regime, we find that the normalized resistance noise scales with resistance R excellently as SR/R2 ∝ Rl rs with the noise exponent lrs≈ 1.4. With reduced iron vacancy disordering in enhanced superconductivity KxFe2-ySe2 crystals, the level of resistance fluctuations is greatly suppressed, suggesting a geometrical phase transition for conduction channel, which is directly related to the microstructure of the crystals.
|
Received: 30 January 2021
Revised: 04 March 2021
Accepted manuscript online: 23 March 2021
|
PACS:
|
74.40.De
|
(Noise and chaos)
|
|
74.81.-g
|
(Inhomogeneous superconductors and superconducting systems, including electronic inhomogeneities)
|
|
64.60.ah
|
(Percolation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774303 and 11574373) and Joint Fund of Yunnan Provincial Science and Technology Department, China (Grant No. 2019FY003008). |
Corresponding Authors:
†Corresponding author. E-mail: yaoyuan@iphy.ac.cn ‡Corresponding author. E-mail: cren_ynu@163.com
|
Cite this article:
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪) Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy 2021 Chin. Phys. B 30 047402
|
1 Dagotto E 2005 Scienc 309 257 2 Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1 3 Johannes M D and Mazin I I 2008 Phys. Rev. B 77 165135 4 Uemura Y 2009 Nat. Mater. 8 253 5 Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 6 Tranquada J M, Sternlleb B J, Axe J D, Nakamura Y and Uchida S 1995 Nature 375 561 7 Kivelson S A, Bindloss I P, Fradkin E, Oganesyan V, Tranquada J M, Kapitulnik A and Howald C 2009 Rev. Mod. Phys. 75 1201 8 McElroy K, Lee J, Slezak J A, Lee D H, Eisaki H, Uchida S and Davis J C 2005 Science 309 1048 9 Uehara M, Mori S, Chen C H,Cheong S W 1999 Nature 399 560 10 Mori S, Chen C H and Cheng S W 1998 Nature 392 473 11 Phillips J C 2008 Pro. Natl. Acad. Sci. USA 105 9917 12 Gor'kov L and Kresin V 2000 J. Supercond: Incorp. Novel Magn. 13 239 13 Dagotto E2002 Nanoscale Phase Separation and Colossal Magnetoresistance(Springer-Verlag) 14 Park J T, Inosov D S, Niedermayer Ch, Sun G L, Haug D, Christensen N B, Dinnebier R, Boris A V, Drew A J, Schulz L, Shapoval T, Wolff U, Neu V, Yang X P, Lin C T, Keimer B and Hinkov V 2009 Phys. Rev. Lett. 102 117006 15 He X B, Li G R, Zhang J D, Karki A B, Jin R Y, Sales B C, Sefat A S, McGuire M A, Mandrus D and Plummer E W 2011 Phys. Rev. B 83 220502 16 Speller S C, Britton T B, Hughes G M, Krzton G and Maziopa A 2012 Supercond. Sci. Technol. 25 084023 17 Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520 18 Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang L, Li A G, Dai X, Mao H K and Zhao Z X 2012 Nature 483 67 19 Liu Y, Wang G, Ying T P, Lai X F, Jin S F, Liu N, Hu J P and Chen X L 2016 Adv. Sci. 3 1600098 20 Li W, Ding H, Deng P, Chang K, Song C L, He K, Wang L L, Ma X C, Hu J P, Chen X and Xue Q K 2011 Nat. Phys. 8 126 21 Wang Z, Song Y J, Shi H L, Wang Z W, Chen Z, Tian H F, Chen G F, Guo J G, Yang H Y and Li J Q 2011 Phys. Rev. B 83 140505 22 Wei B, Huang Q Z, Chen G F, Green M A, Wang D M, He J B and Qiu Y M 2011 Chin. Phys. Lett. 28 086104 23 Wang M, Wang M Y, Li G N, Huang Q, Li C H, Tan G T, Zhang C L, Cao H B, Tian W, Zhao Y, Chen Y C, Lu X Y, Sheng B, Luo H Q, Li S L, Fang M H, Zarestky H J, Ratcliff W, Lumsden M D, Lynn J W and Dai P C 2011 Phys. Rev. B 84 094504 24 Zhao J, Cao H B, Courchesne E B, Lee D H and Birgeneau R J 2012 Phys. Rev. Lett. 109 267003 25 Shermadini A, Krzton-Maziopa A, Bendele M, Khasanov M, Luetkens H, Conder K, Pomjakushina E, Weyeneth S, Pomjakushin V, Bossen O and Amato A 2011 Phys. Rev. Lett. 106 117602 26 Texier Y, Deisenhofer J, Tsurkan V, Loidl A, Inosov D S, Friemel G and Bobroff J 2012 Phys. Rev. Lett. 108 237002 27 Ricci A, Poccia N, Campi G, Joseph B, Arrighetti G, Barba L, Reynolds M, Burghammer M, Takeya H, Mizuguchi Y, Takano Y, Colapietro M, Saini N L and Bianconi A 2011 Phys. Rev. B 84 060511 28 Shoemaker D P, Chung D Y, Claus H, Francisco M C, Llobet S A and Kanatzidis M G 2012 Phys. Rev. B 86 184511 29 Guo J, Chen X J, Dai J H, Zhang C, Guo J G, Chen X L, Wu Q, Gu D C, Gao P W, Yang L H, Yang H, Dai X, Mao H K, Sun L L and Zhao Z X 2012 Phys. Rev. Lett. 108 197001 30 Shen B, Zeng B, Chen G F, He J B, Wang D M, Yang H and Wen H H 2011 Europhys. Lett. 96 37010 31 Yuan R H, Dong T, Song Y J, Zhang P, Chen G F, Hu J P and Wang N L 2011 Scientific Reports 2 221 32 Ding X X, Fang D L, Wang Z Y, Yang H, Liu J Z, Deng Q, Ma G B, Meng C, Hu Y H and Wen H H 2013 Nat. Commun. 4 1897 33 Fang L, Luo H Q, Cheng P, Wang Z S, Jia J, Mu G, Shen B, Mazin I I, Shan L, Ren C and Wen H H 2009 Phys. Rev. B 80 140508 34 Dutta P, Dimon P and Horn P M 1979 Phys. Rev. Lett. 43 646 35 Raquet B, Coey J M D, Wirth S and von Molnar S 1999 Phys. Rev. B 59 12435 36 Müller J, Brandenburg J and Schlueter J A 2009 Phys. Rev. B 79 214521 37 Deutscher G1983 Percolation, Localization, and Superconductivity(NATO Science Series Vol. 109 Springer) P. 95 38 Testa J A, Yi Song, Chen X D, Golben J, Lee S I, Patton B R and Gaines J R 1988 Phys. Rev. B 38 2922 39 Kiss L B, Larsson T and Svedlindh P 1993 Physica C 207 318 40 Müller J, Brandenburg J and Schlueter J A 2009 Phys. Rev. Lett. 102 047004 41 Rammal R, Tannous C, Breton P and Tremblay A M S 1985 Phys. Rev. Lett. 54 1718 42 Kogan S1996 Electronic Niose and Fluctuations in Solids (Cambridge: Cambridge University Press) 43 Kiss L B and Svedlindh P 1993 Phys. Rev. Lett. 71 2817 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|