CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic anisotropy in 5d transition metal-porphyrin molecules |
Yan-Wen Zhang(张岩文)1, Gui-Xian Ge(葛桂贤)1,†, Hai-Bin Sun(孙海斌)2, Jue-Ming Yang(杨觉明)1, Hong-Xia Yan(闫红霞)1, Long Zhou(周龙)1, Jian-Guo Wan(万建国)3, and Guang-Hou Wang(王广厚)3 |
1 Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi University, Shihezi\/ 832003, China; 2 Key Laboratory of Advanced Micro/Nano Functional Materials, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang\/ 464000, China; 3 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing\/ 210093, China |
|
|
Abstract Single molecule magnets (SMMs) with large magnetic anisotropy energy (MAE) have great potential applications in magnetic recording. Using the first-principles calculations, we investigate the MAE of 5d transition metal-porphyrin-based SMMs by using the PBE and PBE+U with different U values, respectively. The results indicate that W-P, Re-P, Os-P, and Ir-P possess the considerably large MAE among 5d TM-P SMMs. Furthermore, the MAE of 5d TM-P can be facilely manipulated by tensile strain. The reduction of the absolute value of MAE for Ir-P molecule caused by tensile strain makes it easier to implement the writing operation. The decreasing of the occupation number of minority-spin channels of Ir-dx2-y2 orbital leads the MAE to decrease when the tensile strain increases.
|
Received: 17 October 2020
Revised: 27 November 2020
Accepted manuscript online: 02 December 2020
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
31.10.+z
|
(Theory of electronic structure, electronic transitions, and chemical binding)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21403144, 11464038, 11134005, and 51472113) and the National Key Project for Basic Research of China (Grant Nos. 2013CB922103 and 2015CB921203). |
Corresponding Authors:
†Corresponding author. E-mail: geguixian@126.com
|
Cite this article:
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚) Magnetic anisotropy in 5d transition metal-porphyrin molecules 2021 Chin. Phys. B 30 047501
|
1 Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179 2 Ardavan A and Blundell S J 2009 J. Mater. Chem. 19 1754 3 Leuenberger M N and Loss D 2001 Nature 410 789 4 Stamp P C E and Gaita-Arino A 2009 J. Mater. Chem. 19 1718 5 Rocha A R, Garc\'ía-suàrez V M, Bailey S W, Lambert C J, Ferrer J and Sanvito S 2005 Nat. Mater. 4 335 6 Coronado E and Epsetin A J 2009 J. Mater. Chem. 19 1670 7 Zhang Q Y, Cui H, Tian C L, Chen H, Wang J Z and Yuan H K 2019 J. Alloys Compd. 773 327 8 Han X C, Cui H, Liu B, Tian C L, Wang J Z, Chen H and Yuan H K 2018 Sci. Rep. 8 9429 9 Li C, Zhang S B, Jin W, Lefkids G and Hübner W 2014 Phys. Rev. B 89 184404 10 Blundell S J and Pratt F L2004 J. Phys.: Condens. Matter 16 R771 11 Hu J and Wu R Q 2013 Phys. Rev. Lett. 110 097202 12 Annese E, Casolari F, Fujii J and Rossi G 2013 Phys. Rev. B 87 054420 13 Wang J H, Shi Y S, Cao J X and Wu R Q 2009 Appl. Phys. Lett. 94 122502 14 Lottner C 2004 Cancer Lett. 203 171 15 Barth J V, Costantini G and Kern K 2005 Nature 437 671 16 Yokoyama T, Yokoyama S, Kamikado T, Okuno Y and Mashiko S 2001 Nature 413 619 17 Roquelet C, Garrot D, Lauret J S, Voisin C, Alain-Rizzo V, Roussignol Ph, Delaire J A and Deleporte E 2010 Appl. Phys. Lett. 97 141918 18 Gupta J, Vijayan C, Maurya S K and Goswami D 2011 J. Appl. Phys. 109 113101 19 Roquelet C, Vialla F, Diederichs C, et al.2012 ACS Nano 6 8796 20 Zhong Q, Diev V V, Roberts S T, et al.2013 ACS Nano 7 3466 21 Panchmatia P M, Sanyal B and Oppeneer P M 2008 Chem. Phys. 343 47 22 Bernien M, Xu X, Miguel J, et al.2007 Phys. Rev. B 76 214406 23 Chiba D, Nakatani Y, Matsukura F and Ohno H 2010 Appl. Phys. Lett. 96 192506 24 Fechner M, Zhan P, Ostanin S, Bibes M and Mertig I 2012 Phys. Rev. Lett. 108 197206 25 Seki T, Kohda M, Nitta J and Takanashi K 2011 Appl. Phys. Lett. 98 212505 26 Bai Y H, Wang X, Mu L P and Xu X H 2016 Chin. Phys. Lett. 33 87501 27 Zhao Q, He X X, Morvan F J, et al.2020 Chin. Phys. 29 037501 28 Hu J and Wu R Q2015 Phys. Chem. Chem. Phys. 7 39 29 Moon S J, Jin H, Kim K W, et al.2008 Phys. Rev. Lett. 101 226402 30 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 31 Hobbs D, Kresse G and Hafner J 2000 Phys. Rev. B 62 11556 32 Neugebauer J and Scheffer M 1992 Phys. Rev. B 46 16067 33 Charap S H, Lu P L and He Y J 1997 IEEE Trans. Magn. 33 978 34 Mannini M, Pineider F, Sainctavit P, et al.2009 Nat. Mater. 8 194 35 He K H and Chen J S 2012 J. Appl. Phys. 111 07 36 Wang D S, Wu R Q and Freeman A J 1993 Phys. Rev. B 47 14932 37 Bruno P 1989 Phys. Rev. B 39 865 38 Van Der Laan G 1998 J. Phys.: Condens. Matter 10 3239 39 Van Vleck J H 1937 Phys. Rev. 52 1178 40 Frisch M J, Trucks G W, Schlegel H B, et al.2009 Gaussian, Inc. Wallingford CT |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|