Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
TOPICAL REVIEW—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Quantum simulations with nuclear magnetic resonance system |
Chudan Qiu(邱楚丹)1, Xinfang Nie(聂新芳)1,†, and Dawei Lu(鲁大为)1,2,‡ |
1 Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; 2 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract Thanks to the quantum simulation, more and more problems in quantum mechanics which were previously inaccessible are now open to us. Capitalizing on the state-of-the-art techniques on quantum coherent control developed in past few decades, e.g., the high-precision quantum gate manipulating, the time-reversal harnessing, the high-fidelity state preparation and tomography, the nuclear magnetic resonance (NMR) system offers a unique platform for quantum simulation of many-body physics and high-energy physics. Here, we review the recent experimental progress and discuss the prospects for quantum simulation realized on NMR systems.
|
Received: 13 October 2020
Revised: 04 January 2021
Accepted manuscript online: 03 February 2021
|
PACS:
|
82.56.-b
|
(Nuclear magnetic resonance)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
04.60.-m
|
(Quantum gravity)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0308100), the National Natural Science Foundation of China (Grant Nos. 12075110, 11905099, 11605005, 11875159, and U1801661), Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2019A1515011383), Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. ZDSYS20170303165926217, JCYJ20170412152620376, and JCYJ20180302174036418), and Guangdong Innovative and Entrepreneurial Research Team Program, China (Grant No. 2016ZT06D348). |
Corresponding Authors:
†Corresponding author. E-mail: niexf@sustech.edu.cn ‡Corresponding author. E-mail: ludw@sustech.edu.cn
|
Cite this article:
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为) Quantum simulations with nuclear magnetic resonance system 2021 Chin. Phys. B 30 048201
|
1 Houck A A, Türeci H E and Koch J 2012 Nat. Phys. 8 292 2 Wendin G 2017 Rep. Prog. Phys. 80 106001 3 Barreiro J T, Müller M, Schindler P, Nigg D, Monz T, Chwalla M, Hennrich M, Roos C F, Zoller P and Blatt R 2011 Nature 470 486 4 Blatt R and Roos C F 2012 Nat. Phys. 8 277 5 Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Adv. Phys. 56 243 6 Bloch I, Dalibard J and Nascimbene S 2012 Nat. Phys. 8 267 7 Saffman M 2016 J. Phys. B: Atom. Mol. Opt. Phys. 49 202001 8 Angelakis D G 2017 Quantum Science and Technology (Springer) 9 Flamini F, Spagnolo N and Sciarrino F 2018 Rep. Prog. Phys. 82 016001 10 Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401 11 Childress L and Hanson R 2013 MRS Bulletin 38 134 12 Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153 13 Chuang I L, Vandersypen L M, Zhou X, Leung D W and Lloyd S 1998 Nature 393 143 14 Jones J A, Mosca M and Hansen R H 1998 Nature 393 344 15 Somaroo S, Tseng C, Havel T, Laflamme R and Cory D G 1999 Phys. Rev. Lett. 82 5381 16 Peng X, Zhang J, Du J and Suter D 2009 Phys. Rev. Lett. 103 140501 17 Zhang J F, Yung M H, Laflamme R, Aspuru-Guzik A and Baugh J 2012 Nat. Commun. 3 1 18 Lu D W, Li K, Li J, Katiyar H, Park A J, Feng G, Xin T, Li H, Long G L, Brodutch A, Baugh J, Zeng B and Laflamme R 2017 Npj Quantum Inf. 3 48 19 Li J, Luo Z, Xin T, Wang H, Kribs D, Lu D, Zeng B and Laflamme R 2019 Phys. Rev. Lett. 123 030502 20 Cory D G, Fahmy A F and Havel T F 1997 Proc. Natl. Acad. Sci. USA 94 1634 21 Gershenfeld N A and Chuang I L 1997 Science 275 350 22 Knill E, Chuang I and Laflamme R 1998 Phys. Rev. A 57 3348 23 Knill E, Laflamme R, Martinez R and Tseng C H 2000 Nature 404 368 24 Trotter H F 1959 Proc. Am. Math. Soc. 10 545 26 Nielsen M A and Chuang I 2002 Quantum computation and quantum information (American Association of Physics Teachers) 27 Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T and Glaser S J 2005 J. Magn. Reson. 172 296 28 Chuang I L, Gershenfeld N and Kubinec M 1998 Phys. Rev. Lett. 80 3408 29 Shaka A, Keeler J, Smith M and Freeman R 1985 J. Magn. Reson. 61 175 30 Ryan C, Laforest M and Laflamme R 2009 New J. Phys. 11 013034 31 Hayden P and Preskill J 2007 J. High Energy Phys. 2007 120 32 Swingle B 2018 Nat. Phys. 14 988 33 Larkin A and Ovchinnikov Y N Sov. Phys. JETP 28 1200 34 Hosur P, Qi X L, Roberts D A and Yoshida B 2016 J. High Energy Phys. 2016 4 35 Hahn E L 1950 Phys. Rev. 80 580 36 Li J, Fan R, Wang H, Ye B, Zeng B, Zhai H, Peng X and Du J 2017 Phys. Rev. X 7 031011 37 Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J and Rey A M 2017 Nat. Phys. 13 781 38 Shenker S H and Stanford D 2015 J. High Energy Phys. 2015 132 39 Lieb E H and Robinson D W 1972 Statistical mechanics pp. 425-431 (Springer) 40 Roberts D A and Swingle B 2016 Phys. Rev. Lett. 117 091602 41 Kitaev A Talk given at the Fundamental Physics Prize Symposium Vol. 10 42 Shenker S H and Stanford D 2014 J. High Energy Phys. 2014 67 43 Maldacena J, Shenker S H and Stanford D 2016 J. High Energy Phys. 2016 106 44 Maldacena J and Stanford D 2016 Phys. Rev. D 94 106002 45 Lewis-Swan R, Safavi-Naini A, Kaufman A and Rey A 2019 Nat. Rev. Phys. 1 627 46 Khemani V, Lim S P, Sheng D and Huse D A 2017 Phys. Rev. X 7 021013 47 Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J and Greiner M 2019 Science 364 256 48 Islam R, Ma R, Preiss P M, Tai M E, Lukin A, Rispoli M and Greiner M 2015 Nature 528 77 49 Wei K X, Ramanathan C and Cappellaro P 2018 Phys. Rev. Lett. 120 070501 50 Bardarson J H, Pollmann F and Moore J E 2012 Phys. Rev. Lett. 109 017202 51 Haeberlen U High Resolution NMR in solids selective averaging: supplement 1 advances in magnetic resonance Vol. 1(Elsevier) 52 Heyl M, Pollmann F and Dòra B 2018 Phys. Rev. Lett. 121 016801 53 Essler F H L, Evangelisti S and Fagotti M 2012 Phys. Rev. Lett. 109 247206 54 Sachdev S 2007 Quantum Phase Transitions p. 1 55 Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X and Monroe C 2017 Nature 551 601 56 Nie X, Wei B B, Chen X, Zhang Z, Zhao X, Qiu C, Tian Y, Ji Y, Xin T, Lu D and Li J 2020 Phys. Rev. Lett. 124 250601 57 \vZunkovi\vc B, Heyl M, Knap M and Silva A 2018 Phys. Rev. Lett. 120 130601 58 Maldacena J and Susskind L 2013 Fortschr. Phys. 61 781 59 Ryu S and Takayanagi T 2006 Phys. Rev. Lett. 96 181602 60 Lewkowycz A and Maldacena J 2013 J. High Energy Phys. 2013 90 61 Li K, Han M, Qu D, Huang Z, Long G, Wan Y, Lu D, Zeng B and Laflamme R 2019 Npj Quantum Inf. 5 30 62 Pastawski F, Yoshida B, Harlow D and Preskill J 2015 J. High Energy Phys. 2015 1 63 Rovelli C and Smolin L 1995 Nucl. Phys. B 442 593 64 Rovelli C and Vidotto F 2014 Covariant loop quantum gravity: an elementary introduction to quantum gravity and spinfoam theory (Cambridge University Press) 65 Barbieri A 1998 Nucl. Phys. B 518 714 66 Li K, Li Y, Han M, Lu S, Zhou J, Ruan D, Long G, Wan Y, Lu D, Zeng B and Laflamme R 2019 Commun. Phys. 2 1 67 Rovelli C and Speziale S 2006 Classical Quantum Gravity 23 5861 68 Engle J, Livine E, Pereira R and Rovelli C 2008 Nucl. Phys. B 799 136 69 Ma X, Jackson T, Zhou H, Chen J, Lu D, Mazurek M D, Fisher K A, Peng X, Kribs D, Resch K J, Ji Z, Zeng B and Laflamme R 2016 Phys. Rev. A 93 032140 70 Lu D, Xin T, Yu N, Ji Z, Chen J, Long G, Baugh J, Peng X, Zeng B and Laflamme R 2016 Phys. Rev. Lett. 116 230501 71 Wang H, Zheng W, Yu N, Li K, Lu D, Xin T, Li C, Ji Z, Kribs D, Zeng B, Peng X and Du J 2016 Sci. China, Ser. A: Math. Phys. Astron. 59 100313 72 Xin T, Lu D, Klassen J, Yu N, Ji Z, Chen J, Ma X, Long G, Zeng B and Laflamme R 2017 Phys. Rev. Lett. 118 020401 73 Xin T, Lu S, Cao N, Anikeeva G, Lu D, Li J, Long G and Zeng B 2019 Npj Quantum Inf. 5 109 74 Lu D, Zhu J, Zou P, Peng X, Yu Y, Zhang S, Chen Q and Du J 2010 Phys. Rev. A 81 022308 75 Xu N, Zhu J, Lu D, Zhou X, Peng X and Du J 2012 Phys. Rev. Lett. 108 130501 76 Xin T, Wei S, Cui J, Xiao J, Arrazola I, Lamata L, Kong X, Lu D, Solano E and Long G 2020 Phys. Rev. A 101 032307 77 Li K, Wan Y, Hung L Y, Lan T, Long G, Lu D, Zeng B and Laflamme R 2017 Phys. Rev. Lett. 118 080502 78 Park A J, McKay E, Lu D and Laflamme R 2016 New J. Phys. 18 043043 79 Luo Z, You Y Z, Li J, Jian C M, Lu D, Xu C, Zeng B and Laflamme R 2019 Npj Quantum Inf. 5 53 80 Wei K X, Peng P, Shtanko O, Marvian I, Lloyd S, Ramanathan C and Cappellaro P 2019 Phys. Rev. Lett. 123 090605 81 àlvarez G A and Suter D 2010 Phys. Rev. Lett. 104 230403 82 Chen H, Lu D, Chong B, Qin G, Zhou X, Peng X and Du J 2011 Phys. Rev. Lett. 106 180404 83 Li Z, Liu X, Wang H, Ashhab S, Cui J, Chen H, Peng X and Du J 2019 Phys. Rev. Lett. 122 090504 84 Wen J W, Qin G Q, Zheng C, Wei S J, Kong X Y, Xin T and Long G L 2020 Npj Quantum Inf. 6 28(2020) 85 Wang B X, Tao M J, Ai Q, Xin T, Lambert N, Ruan D, Cheng Y C, Nori F, Deng F G,Long G L 2018 Npj Quantum Inf. 4 52(2018) 86 Cai J, Retzker A, Jelezko F and Plenio M B 2013 Nat. Phys. 9 168 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|