Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 046102    DOI: 10.1088/1674-1056/ac3654
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation

Awen Liu(刘阿文)1,2,3, Hefei Huang(黄鹤飞)2,3,†, Jizhao Liu(刘继召)2,3, Zhenbo Zhu(朱振博)2,3, and Yan Li(李燕)1,2,3,‡
1 School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China;
2 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
3 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We report helium ion irradiation experiments for a new type of dispersion-strengthened NiMo-Y2O3 alloy with three different irradiation doses and varying irradiation dose rates at 750 ℃ to evaluate its helium-induced damage behavior. Transmission electron microscopy was used to reveal the evolution of helium bubbles after irradiation. The experimental results show that with increasing ion dose, the number density of helium bubbles increases continuously. However, the mean size of helium bubbles first increases and then decreases, mainly due to the varied ion dose rates. The volume fractions of helium bubbles in the three investigated samples after irradiation are 0.15%, 0.32%, and 0.27%, which are lower than that of the Hastelloy N alloy (0.58%) after similar irradiation conditions. This indicates that the NiMo-Y2O3 alloy exhibits better helium-induced-swelling resistance than the Hastelloy N alloy, highlighting its potential applicability to MSRs, from the perspective of irradiation performance.
Keywords:  NiMo-Y2O3 alloy      dose rate      helium bubble evolution      volume fraction  
Received:  08 October 2021      Revised:  29 October 2021      Accepted manuscript online:  04 November 2021
PACS:  61.82.-d (Radiation effects on specific materials)  
  61.80.Lj (Atom and molecule irradiation effects)  
  61.72.U- (Doping and impurity implantation)  
  61.80.Jh (Ion radiation effects)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12022515, 11975304, and 91126012) and the Youth Innovation Promotion Association, CAS (Grant No. 202063).
Corresponding Authors:  Hefei Huang, Yan Li     E-mail:  huanghefei@sinap.ac.cn;liyan@sinap.ac.cn

Cite this article: 

Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕) Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation 2022 Chin. Phys. B 31 046102

[1] Khalil H 2002 A Technology Roadmap for Generation IV Nuclear Energy Systems, GIF-002-00, Workshop on R&D Needs for Current and Future Nuclear Systems OECD, Paris, France p. 239
[2] Huang H F, Liu J Z, Lei G H, Muránsky O, Wei T and Ionescu M 2021 Chin. Phys. B 30 056108
[3] Mathieu L, Heuer D, Brisa R, Gardena C, Burn C L, Lecarpentier D, Leotard E, Loiseaux J M, Méplan O, Merle-Lucotte E, Nuttin A, Walle E and Wilson J 2006 Prog. Nucl. Ener. 48 664
[4] Huang H F, Zhou X L, Li C W, Gao J, Wei T, Lei G H, Li J J, Ye L F, Huang Q and Zhu Z Y 2017 J. Nucl. Mater. 497 108
[5] Zhu R, Zhou Q, Shi L, Sun L B, Wu X, Lv S and Li Z C 2021 Chin. Phys. B 30 076105
[6] Leblanc D 2010 Nucl. Eng. Des. 240 1644
[7] Zinkle S J and Was G S 2013 Acta. Mater. 61 735
[8] Bruemmera S M, Simonena E P, Scottb P M, Andresen P L, Was G S and Nelson J L 1999 J. Nucl. Mater. 274 299
[9] Zinkle S J and Busby J T 2009 Mater. Today 12 12
[10] Li Y P, Ran G, Liu X Y, Qiu X, Han Q, Li W J and Guo Y J 2021 Chin. Phys. B 30 086109
[11] Huang H F, Zhang W, De Los Reyes M, Zhou X L, Yang C, Xie R, Zhou X T, Huai P and Xu H J 2016 Mater. Design. 90 359
[12] Zhu Z B, Huang H F, Liu J Z and Zhu Z Y 2020 J. Nucl. Mater. 541 152419
[13] Zhu Z B, Huang H F, Muránsky O, Liu J Z, Zhu Z Y and Huang Y 2021 J. Nucl. Mater. 525 32
[14] Li C, Lei G H, Liu J Z, Liu A W, Ren C L and Huang H F 2021 J. Mater. Sci. Technol. 109 129
[15] Liu J Z, Huang H F, Liu A W and Li Y 2021 J. Nucl. Mater. 548 152855
[16] Liu J Z, Huang H F, Gao J, Zhu Z B and Li Y 2019 J. Nucl. Mater. 517 328
[17] Huang H F, Li D H, Li J J, Liu R D, Lei G H, He S X, Huang Q and Yan L 2014 Mater. Trans. 55 1243
[18] Zhu Z B, Huang H F, Liu J Z, Gao J and Zhu Z Y 2019 J. Nucl. Mater. 525 32
[19] Gurovich B, Kuleshova E, Shtrombakh Y, Fedotova S, Maltsev D, Frolov A, Zabusov O, Erak D and Zhurko D 2015 J. Nucl. Mater. 456 23
[20] Yang C, Muránsky O, Zhu H L, Thorogood G J, Huang H F and Zhou X T 2017 Mater. Design. 113 223
[21] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods B 268 1818
[22] Astm E 2009 ASTM E521, Standard practice for neutron radiation damage simulation by charged-particle irradiation, December 2, 2009, West Conshohocken, USA, p.1
[23] Borodin V A and Vladimirov P V 2009 J. Nucl. Mater. 386-388 106
[24] Bennetch J I, Sattler M L, Schiestle Horton L L, Horton J A and Jesser W A 1979 J. Nucl. Mater. 85-86 665
[25] Jublot-Leclerc S, Lescoat M -L., Fortuna F, Legras L, Li X and Gentils A 2015 J. Nucl. Mater. 466 646
[26] Was G S 2007 Fundamentals of Radiation Materials Science:Metals and Alloys (New York:Springer)
[27] Wang C, Ren C, Zhang W, Gong H F, Huai P, Zhu Z Y, Deng H Q and Hu W Y 2015 Comput. Mater. Sci. 107 54
[28] Trinkaus H and Singh B N 2003 J. Nucl. Mater. 323 229
[29] Gao J, Huang H F, Liu X, Wang C B, Stubbins J F and Li Y 2018 Scripta Mater. 147 93
[30] Li N, Nastasi M and Misra A 2012 Int. J. Plasticity 32-33 1
[1] Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays
Zhangyang Zhou(周章洋), Jia Yang(杨佳), Yi Liu(刘艺), Zhipeng Gao(高志鹏), Linhong Cao(曹林洪), Leiming Fang(房雷鸣), Hongliang He(贺红亮), and Zhengwei Xiong(熊政伟). Chin. Phys. B, 2021, 30(12): 126803.
[2] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[3] Experimental determination of distributions of soot particle diameter and number density by emission and scattering techniques
Huawei Liu(柳华蔚), Shu Zheng(郑树). Chin. Phys. B, 2019, 28(1): 014206.
[4] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[5] Estimation of enhanced low dose rate sensitivity mechanisms using temperature switching irradiation on gate-controlled lateral PNP transistor
Xiao-Long Li(李小龙), Wu Lu(陆妩), Xin Wang(王信), Xin Yu(于新), Qi Guo(郭旗), Jing Sun(孙静), Mo-Han Liu(刘默寒), Shuai Yao(姚帅), Xin-Yu Wei(魏昕宇), Cheng-Fa He(何承发). Chin. Phys. B, 2018, 27(3): 036102.
[6] Effect of ionizing radiation on dual 8-bit analog-to-digital converters (AD9058) with various dose rates and bias conditions
Li Xing-Ji (李兴冀), Liu Chao-Ming (刘超铭), Sun Zhong-Liang (孙中亮), Xiao Li-Yi (肖立伊), He Shi-Yu (何世禹). Chin. Phys. B, 2013, 22(9): 098501.
[7] The numerical study of shock-induced hydrodynamic instability and mixing
Wang Tao(王涛), Bai Jing-Song(柏劲松), Li Ping(李平), and Zhong Min(钟敏). Chin. Phys. B, 2009, 18(3): 1127-1135.
[8] Study on the dose rate upset effect of partially depleted silicon-on-insulator static random access memory
Zhao Fa-Zhan (赵发展), Liu Meng-Xin (刘梦新), Guo Tian-Lei (郭天雷), Liu Gang (刘刚), Hai Chao-He (海潮和), Han Zheng-Sheng (韩郑生), Yang Shan-Chao (杨善潮), Li Rui-Bin (李瑞宾), Lin Dong-Sheng (林东生), Chen Wei (陈伟). Chin. Phys. B, 2008, 17(12): 4599-4605.
No Suggested Reading articles found!