Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 084703    DOI: 10.1088/1674-1056/26/8/084703
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator

Dong-Liang Bian(卞栋梁)1, Yun Wu(吴云)2, Min Jia(贾敏)1, Chang-Bai Long(龙昌柏)1, Sheng-Bo Jiao(焦胜博)1
1 Air Force Engineering University, Xi'an 710038, China;
2 Xi'an Jiaotong University, Xi'an 710049, China
Abstract  

This paper reports the material characterization and performance evaluation of an AlN ceramic based dielectric barrier discharge (DBD) plasma actuator. A conventional Al2O3 ceramic is also investigated as a control. The plasma images, thermal characteristics and electrical properties of the two actuators are compared and studied. Then, with the same electrical operating parameters (12-kV applied voltage and 11-kHz power frequency), variations of the surface morphologies, consumed power and induced velocities are recorded and analyzed. The experimental results show that the AlN actuator can produce a more uniform discharge while the discharge of the Al2O3 actuator is easier to become filamentary. The later condition leads to higher power consumption and earlier failure due to electrode oxidation. In the plasma process, the power increment of the AlN actuator is higher than that of the Al2O3 actuator. The induced velocity is also influenced by this process. Prior to aging, the maximum induced velocity of the AlN actuator is 4.2 m/s, which is about 40% higher than that of the Al2O3 actuator. After 120-min plasma aging, the maximum velocity of the aged AlN actuator decreases by 27.8% while the Al2O3 actuator registers a decrease of 25%.

Keywords:  plasma      DBD      flow control      discharge      ionic wind      Al2O3 ceramic      AlN ceramic  
Received:  24 February 2017      Revised:  13 April 2017      Accepted manuscript online: 
PACS:  47.85.L- (Flow control)  
  52.25.Mq (Dielectric properties)  
  52.50.-b (Plasma production and heating)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51522606, 91541120, 51502346, and No.51407194).

Corresponding Authors:  Yun Wu     E-mail:  wuyun1223@126.com

Cite this article: 

Dong-Liang Bian(卞栋梁), Yun Wu(吴云), Min Jia(贾敏), Chang-Bai Long(龙昌柏), Sheng-Bo Jiao(焦胜博) Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator 2017 Chin. Phys. B 26 084703

[1] Wu Y, Li Y H, Jia M, Liang H and Song H M 2012 Chin. Phys. B 21 045202
[2] Zhao G Y, Li Y H, Liang H, Hua W Z and Han M H 2015 Acta Phys. Sin. 64 015101 (in Chinese)
[3] Moreau E 2007 J. Phys. D: Appl. Phys. 40 605
[4] Corke T C, Post M L and Orlov D M 2009 Exp. Fluids 46 1
[5] Benard N, Moreau E 2014 Exp. Fluids 55 1846
[6] Forte M, Jolibois J, Pons J, Moreau E, Touchard G and Cazalens M 2007 Exp. Fluids 43 917
[7] Pons J, Moreau E and Touchard G 2005 J. Phys. D: Appl. Phys. 38 3635
[8] Dong B, Bauchire J M, Pouvesle J M, Magnier P and Hong D 2008 J. Phys. D: Appl. Phys. 41 155201
[9] Pouryoussefi S G and Mirzaei M 2015 Plasma Sci. Technol. 17 415
[10] Thomas F, Corke T, Iqbal M, Kozlov A and Schatzman D 2009 AIAA J. 47 2169
[11] Abe T, Takizawa Y, Sato S and Kimura N 2007 45th AIAA Aerospace Sciences Meeting, January 8-11, 2007, Reno, Nevada, p. 187
[12] Durscher R, Stanfield S and Roy S 2012 Appl. Phys. Lett. 101 252902
[13] Park H W, Cho I J, Choi S and Park D W 2014 IEEE Trans. Plasma Sci. 42 2364
[14] Durscher R and Roy S 2012 J. Phys. D: Appl. Phys. 45 012001
[15] Michael J J and David B G 2014 Appl. Phys. Lett. 105 264102
[16] Fine N E and Brickner S J 2010 AIAA J. 48 2979
[17] Starikovskiy A and Miles R 2013 51st AIAA Aerospace Sciences Meeting, January 7-10, 2013, Dallas, Texas, USA, p. 754
[18] Opaits D, Zaidi S, Shneider M and Miles R 2009 39th AIAA Fluid Dynamics Conference, June 22-25, 2009, San Antonio, Texas, USA, p. 4189
[19] Hanson R E, Kimelman J, Houser N M and Lavoie P 2014 J. Appl. Phys. 115 043301
[20] Hanson R E, Kimelman J, Houser N M and Lavoie P 2013 51st AIAA Aerospace Sciences Meeting, Grapvine, TX, p. 397
[21] Ndong A C, Zouzou N, Benard N and Moreau E 2013 IEEE Trans. Dielec. Electr. Insul. 20 1554
[22] Luo Y, Wu G N, Liu J W, Peng J, Gao G Q, Zhu G Y, Wang P and Cao K J 2014 Chin. Phys. B 23 027703
[23] Pons J, Oukacine L, Moreau E and Tatibouët J M 2008 IEEE Trans. Plasma Sci. 36 1342
[24] Biganzoli I, Barni R, Gurioli A, Pertile R and Riccardi C 2014 J. Phys. C: Conference Series 550 012038
[25] Tirumala R, Benard N, Moreau E, Fenot M, Lalizel G and Dorignac E 2014 J. Phys. D: Appl. Phys. 47 255203
[26] Laurentie J C, Jolibois J and Eric Moreau 2009 J. Electrost. 67 93
[27] R Joussot, A Leroy, R Weber, H Rabat, S Loyer and D Hong 2013 J. Phys. D: Appl. Phys. 46 125204
[28] Kriegseis J, Eoller B M, Grundmann S and Tropea C 2011 J. Electrost. 69 302
[29] Murphy J P, Kriegseis J and Lavoie P 2013 J. Appl. Phys. 113 243301
[1] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[4] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[5] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[6] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[7] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[8] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[11] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[12] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[13] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[14] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[15] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
No Suggested Reading articles found!