CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors |
Yan Liu(刘艳)1, Zhao-Jun Lin(林兆军)1, Yuan-Jie Lv(吕元杰)2, Peng Cui(崔鹏)1, Chen Fu(付晨)1, Ruilong Han(韩瑞龙)1, Yu Huo(霍宇)1, Ming Yang(杨铭)1 |
1 School of Microelectronics, Shandong University, Jinan 250100, China; 2 National Key Laboratory of Application Specific Integrated Circuit (ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051, China |
|
|
Abstract The parasitic source resistance (RS) of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) is studied in the temperature range 300-500 K. By using the measured RS and both capacitance-voltage (C-V) and current-voltage (I-V) characteristics for the fabricated device at 300, 350, 400, 450, and 500 K, it is found that the polarization Coulomb field (PCF) scattering exhibits a significant impact on RS at the above-mentioned different temperatures. Furthermore, in the AlGaN/AlN/GaN HFETs, the interaction between the additional positive polarization charges underneath the gate contact and the additional negative polarization charges near the source Ohmic contact, which is related to the PCF scattering, is verified during the variable-temperature study of RS.
|
Received: 14 January 2017
Revised: 23 April 2017
Accepted manuscript online:
|
PACS:
|
71.55.Eq
|
(III-V semiconductors)
|
|
73.40.Cg
|
(Contact resistance, contact potential)
|
|
51.50.+v
|
(Electrical properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174182, 11574182, and 61306113) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110131110005). |
Corresponding Authors:
Zhao-Jun Lin
E-mail: linzj@sdu.edu.cn
|
Cite this article:
Yan Liu(刘艳), Zhao-Jun Lin(林兆军), Yuan-Jie Lv(吕元杰), Peng Cui(崔鹏), Chen Fu(付晨), Ruilong Han(韩瑞龙), Yu Huo(霍宇), Ming Yang(杨铭) Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors 2017 Chin. Phys. B 26 097104
|
[1] |
Palacios T, Rajan S, Chakraborty A, Heikman S, Keller S, DenBaars S P and Mishra U K 2005 IEEE Trans. Electron Devices 52 2117
|
[2] |
Cao Z F, Lin Z J, Lv Y J, Luan C B, Yu Y X, Chen H and Wang Z G 2012 Chin. Phys. B 21 017103
|
[3] |
Zhao J Z, Lin Z J, T D Corrigan, Wang Z, You Z D and Wang Z G 2007 Appl. Phys. Lett. 91 173507
|
[4] |
Luan C B, Lin Z J, Lv Y J, Zhao J T, Wang Y T, Chen H and Wang Z G 2014 J. Appl. Phys. 116 044507
|
[5] |
Zhao J T, Lin Z J, Luan C B, Zhou Y, Yang M, Lv Y J and Feng Z H 2014 Appl. Phys. Lett. 105 083501
|
[6] |
Yang M, Lin Z J, Zhao J T, Cui P, Fu C and Lv Y J 2016 IEEE Trans. Electron Devices 63 1471
|
[7] |
Lv Y J, Feng Z H, Gu G D, Dun S B, Yin J Y, Han T T, Sheng B C, Cai S J, Liu B and Lin Z J 2013 Chin. Phys. B 22 077102
|
[8] |
Lin Z J, Zhao J Z, Corrigan T D, Wang Z, You Z D, Wang Z G and Wu L 2008 J Appl. Phys. 103 044503
|
[9] |
Cohen S S 1983 Thin Solid Films 104 361
|
[10] |
Fontseré A, Pérez-Tomaás A, Plácidi M, Fernández-Martínez P, Baron N, Chenot S, Cordier Y, Moreno J C, Jennings M R, Gammon P M and Walker D 2011 Proc. 8th Spanish Conf. Electron Devices 1-2
|
[11] |
Holmstrom R P, Bloss W L and Chi J Y 1986 IEEE Electron. Dev. Lett. EDL-7 410
|
[12] |
Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B and Eastman L F 2002 J. Phys. Condens. Matter 14 3399
|
[13] |
Bykhovski A D, Kaminski V V, Shur M S, Chen Q C and Khan M A 1996 Appl. Phys. Lett. 69 3254
|
[14] |
Anwar A F M, Webster R T and Smith K V 2006 Appl. Phys. Lett. 88 203510
|
[15] |
Reeber R R and Wang K 2001 MRS Internet J. Nitride Semicond. Res. 6 1
|
[16] |
Deger C, Born E, Angerer H, Ambacher O, Stutzmann M, Hornsteiner J, Riha E and Fischerauer G 1998 Appl. Phys. Lett. 72 2400
|
[17] |
Roder C, Einfeldt S, Figge S and Hommel D 2005 Phys. Rev. B 72 085218
|
[18] |
Figge S, Kröncke H, Hommel D and Epelbaum B M 2009 Appl. Phys. Lett. 94 101915
|
[19] |
Zhao J T, Lin Z J, Luan C B, Chen Q Y, Yang M, Zhou Y, Lv Y J and Feng Z H 2015 Superlattices Microstruct. 79 21
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|