CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structural characterization of Al0.55Ga0.45N epitaxial layer determined by high resolution x-ray diffraction and transmission electron microscopy |
Qing-Jun Xu(徐庆君)1,2, Bin Liu(刘斌)1, Shi-Ying Zhang(张士英)1,2, Tao Tao(陶涛)1, Zi-Li Xie(谢自力)1, Xiang-Qian Xiu(修向前)1, Dun-Jun Chen(陈敦军)1, Peng Chen(陈鹏)1, Ping Han(韩平)1, Rong Zhang(张荣)1, You-Dou Zheng(郑有炓)1 |
1 Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 College of Optoelectronics Engineering, Zaozhuang University, Zaozhuang 277160, China |
|
|
Abstract Structural characteristics of Al0.55Ga0.45N epilayer were investigated by high resolution x-ray diffraction (HRXRD) and transmission electron microscopy (TEM); the epilayer was grown on GaN/sapphire substrates using a high-temperature AlN interlayer by metal organic chemical vapor deposition technique. The mosaic characteristics including tilt, twist, heterogeneous strain, and correlation lengths were extracted by symmetric and asymmetric XRD rocking curves as well as reciprocal space map (RSM). According to Williamson-Hall plots, the vertical coherence length of AlGaN epilayer was calculated, which is consistent with the thickness of AlGaN layer measured by cross section TEM. Besides, the lateral coherence length was determined from RSM as well. Deducing from the tilt and twist results, the screw-type and edge-type dislocation densities are 1.0×108 cm-2 and 1.8×1010 cm-2, which agree with the results observed from TEM.
|
Received: 15 November 2016
Revised: 20 January 2017
Accepted manuscript online:
|
PACS:
|
78.55.Cr
|
(III-V semiconductors)
|
|
68.37.Yz
|
(X-ray microscopy)
|
|
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
Fund: Project supported by the National Key Research and Development Project of China (Grant No. 2016YFB0400100), the Hi-tech Research Project of China (Grant Nos. 2014AA032605 and 2015AA033305), the National Natural Science Foundation of China (Grant Nos. 61274003, 61422401, 51461135002, and 61334009), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BY2013077, BK20141320, and BE2015111), the Project of Green Young and Golden Phenix of Yangzhou City, the Postdoctoral Sustentation Fund of Jiangsu Province, China (Grant No. 1501143B), the Project of Shandong Provinceial Higher Educational Science and Technology Program, China (Grant No. J13LN08), the Solid State Lighting and Energy-saving Electronics Collaborative Innovation Center, Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Research Funds from NJU-Yangzhou Institute of Opto-electronics. |
Corresponding Authors:
Bin Liu, Rong Zhang
E-mail: bliu@nju.edu.cn;rzhang@nju.edu.cn
|
Cite this article:
Qing-Jun Xu(徐庆君), Bin Liu(刘斌), Shi-Ying Zhang(张士英), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Rong Zhang(张荣), You-Dou Zheng(郑有炓) Structural characterization of Al0.55Ga0.45N epitaxial layer determined by high resolution x-ray diffraction and transmission electron microscopy 2017 Chin. Phys. B 26 047801
|
[1] |
Iwaya M, Terao S, Sano T, Ikai T, Nakamura R, Kamiyama S, Amano H and Akasaki I 2002 J. Cryst. Growth 237-239 951
|
[2] |
Wang H and Yao S D 2014 Chin. Phys. B 23 096801
|
[3] |
Kladko V P, Kolomys A F, SlobodianMV, Strelchuk V V, Raycheva V G, Belyaev A E, Bukalov S S, Hardtdegen H, Sydoruk V A, Klein N and Vitusevich S A 2009 J. Appl. Phys. 105 063515
|
[4] |
Heying B, Wu X U, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643
|
[5] |
Thapa S B, Kirchner C, Scholz F, Prinz G M, Thonke K, Sauer R, Chuvilin A, Biskupek J, Kaiser U and Hofstetter D 2007 J. Cryst. Growth 298 383
|
[6] |
Keller S and DenBaars S P 2003 J. Cryst. Growth 248 479
|
[7] |
Metzger T, Hppler R, Born E, Ambacher O, Stutzmann M, Stmmer R, Schuster M, Gbel H, Christiansen S, Albrecht M and Strunk H P 1998 Phil. Mag. A 77 1013
|
[8] |
Zhang J F, Nie Y H, Zhou Y B, Tian K, Ha W, Xiao M, Zhang J C and Hao Y 2014 Chin. Phys. B 23 068102
|
[9] |
Weimann N G and Eastman L F 1998 J. Appl. Phys. 83 3656
|
[10] |
Holy V, Kubena J, Abramof E, Lischka K, Pesek A and Koppensteiner E 1993 J. Appl. Phys. 74 1736
|
[11] |
Fewster P F 2003 X-Ray Scattering from Semicondutors (London: Imperial College Press)
|
[12] |
Liu J Q, Qiu Y X, Wang J F, Xu K and Hui Y 2011 Chin. Phys. Lett. 28 016101
|
[13] |
Williamson G K and Hall W H 1953 Acta Metall. 1 22
|
[14] |
Srikant V, Speck J S and Clarke D R 1997 J. Appl. Phys. 82 4286
|
[15] |
Sun Y J, Brandt O, Liu T Y, Trampert A and Ploog K H 2002 Appl. Phys. Lett. 81 4928
|
[16] |
Dimakis E, Domagala J Z, Delimitis A, Komninou Ph, Adikimenakis A, Iliopoulos E and Georgakilas A 2006 Superlattices Microstruct. 40 246
|
[17] |
Zhang J C, Zhao D G, Wang J F, Wang Y T, Chena J, Liu J P and Yang H 2004 J. Cryst. Growth 268 24
|
[18] |
Poust B, Heying B, Hayashi S, Ho R, Matney K, Sandhu R, Wojtowicz M and Goorsky M 2005 J. Phys. D: Appl. Phys. 38 A93
|
[19] |
Bttcher T, Einfeldt S, Figge S, Chierchia R, Heinke H, Hommel D and Speck J S 2001 Appl. Phys. Lett. 78 1976
|
[20] |
Liu B, Zhang R, Xie Z L, Lu H, Liu Q J, Zhang Z, Li Y, Xiu X Q, Chen P, Han P, Gu S L, Shi Y, Zheng Y D and Schaff W J 2008 J. Appl. Phys. 103 023504
|
[21] |
Xie Z L, Zhou Y J, Song L H, Liu B, Hua X M, Liu Q J, Zhang R and Zheng Y D 2010 Sci. China-Phys. Mech. Astron. 53 68
|
[22] |
Chierchia R, Böttcher T, Heinke H, Einfeldt S, Figge S and Hommel D 2003 J. Appl. Phys. 93 8918
|
[23] |
Heinke H, Kirchner V, Einfeldt S and Hommel D 2000 Appl. Phys. Lett. 77 2145
|
[24] |
Chen Z T, Xu K, Guo L P, Yang Z J, Pan Y B, Su Y Y, Zhang H, Shen B and Zhang G Y 2006 Chin. Phys. Lett. 23 1257
|
[25] |
Liu B, Zhang R, Xie Z L, Liu Q J, Zhang Z, Li Y, Xiu X Q, Yao J, Mei Q, Zhao H, Han P, Lu H, Chen P, Gu S L, Shi Y, Zheng Y D, Cheung W Y, Ke N and Xu J B 2008 J. Cryst. Growth 310 4499
|
[26] |
Cörekci S, Özturk M K, Yu H B, Cakmak M, Özcelik S and Özbay E 2013 Semiconductors 47 820
|
[27] |
Fewster P F 1989 J. Appl. Cryst. 22 64
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|