CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Neutron-induced single event upset simulation in Geant4 for three-dimensional die-stacked SRAM |
Li-Hua Mo(莫莉华)1,2, Bing Ye(叶兵)1,2,†, Jie Liu(刘杰)1,2,‡, Jie Luo(罗捷)1,2, You-Mei Sun(孙友梅)1,2, Chang Cai(蔡畅)1,2, Dong-Qing Li(李东青)1,2, Pei-Xiong Zhao(赵培雄)1,2, and Ze He(贺泽)1,2 |
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Three-dimensional integrated circuits (3D ICs) have entered into the mainstream due to their high performance, high integration, and low power consumption. When used in atmospheric environments, 3D ICs are irradiated inevitably by neutrons. In this paper, a 3D die-stacked SRAM device is constructed based on a real planar SRAM device. Then, the single event upsets (SEUs) caused by neutrons with different energies are studied by the Monte Carlo method. The SEU cross-sections for each die and for the whole three-layer die-stacked SRAM device is obtained for neutrons with energy ranging from 1 MeV to 1000 MeV. The results indicate that the variation trend of the SEU cross-section for every single die and for the entire die-stacked device is consistent, but the specific values are different. The SEU cross-section is shown to be dependent on the threshold of linear energy transfer ($\mathrmLET_\rm th$) and thickness of the sensitive volume ($\mathrmT_\rm sv$). The secondary particle distribution and energy deposition are analyzed, and the internal mechanism that is responsible for this difference is illustrated. Besides, the ratio and patterns of multiple bit upset (MBU) caused by neutrons with different energies are also presented. This work is helpful for the aerospace IC designers to understand the SEU mechanism of 3D ICs caused by neutrons irradiation.
|
Received: 02 September 2020
Revised: 11 November 2020
Accepted manuscript online: 23 November 2020
|
PACS:
|
61.82.Fk
|
(Semiconductors)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
42.88.+h
|
(Environmental and radiation effects on optical elements, devices, and systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12035019, 111690041, and 11675233) and the Project of Science and Technology on Analog Integrated Circuit Laboratory, China ((Grant No. 6142802WD201801). |
Corresponding Authors:
†Corresponding author. E-mail: yebing@impcas.ac.cn ‡Corresponding author. E-mail: j.liu@impcas.ac.cn
|
Cite this article:
Li-Hua Mo(莫莉华), Bing Ye(叶兵), Jie Liu(刘杰), Jie Luo(罗捷), You-Mei Sun(孙友梅), Chang Cai(蔡畅), Dong-Qing Li(李东青), Pei-Xiong Zhao(赵培雄), and Ze He(贺泽) Neutron-induced single event upset simulation in Geant4 for three-dimensional die-stacked SRAM 2021 Chin. Phys. B 30 036103
|
1 Armstrong T W and Colborn B L 2001 Radiat. Meas. 33 229 2 K\"ohler J, Zeitlin C, Ehresmann B, Wimmer-Schweingruber R F, Hassler D M, Reitz G, Brinza D E, Weigle G, Appel J, B\"ottcher S, B\"ohm E, Burmeister S, Guo J, Martin C, Posner A, Rafkin S and Kortmann O 2014 J. Geophys. Res.-Planets 119 594 3 Matthi\"a D, Ehresmann B, Lohf H, K\"oler J, Zeitlin C, Appel J, Sato T, Slaba T, Martin C, Berger T, Boehm E, Boettcher S, Brinza D E, Burmeister S, Guo J, Hassler D M, Posner A, Rafkin S C R, Reitz G, Wilson J W and Wimmer-Schweingruber R F 2016 J. Space Weather Space Clim. 6 17 4 Taber A and Normand E 1993 IEEE Trans. Nucl. Sci. 40 120 5 Guenzer C S, Wolicki E A and Allas R G 1979 IEEE Trans. Nucl. Sci. 26 5048 6 Olsen J, Becher P E, Fynbo P B, Raaby P and Schultz J 1993 IEEE Trans. Nucl. Sci. 40 74 7 Ziegler J and Puchner H SER-history, trends, and challenges: A guide for designing with memory ICs (San Jose, CA: Cypress Semiconductor) 8 Ibe E, Taniguchi H, Yahagi Y, Shimbo K I and Toba T 2010 IEEE Trans. Electron Dev. 57 1527 9 Andreani C, Senesi R, Paccagnella A, Bagatin M, Gerardin S, Cazzaniga C, Frost C D, Picozza P, Gorini G, Mancini R and Sarno M 2018 AIP Adv. 8 025013 10 Kato T, Yamazaki T, Saito N and Matsuyama H 2019 IEEE Trans. Nucl. Sci. 66 1381 11 Lau J H Reliability of RoHS-Compliant 2D and 3D IC Interconnects (New York: McGraw Hill Education) p. 9 12 K De M, P De M, D Sabuncuoglu T, K Baert, E Beyne, Mertens R and C Van H ESA Round Table on Micro/Nano Technologies for Space(Leuven Belgium: ESTEC) 13 Gouker P M, Tyrrell B, D'Onofrio R, Wyatt P, Soares T, Hu W, Chen C, Schwank J R, Shaneyfelt M R and Blackmore E W 2011 IEEE Trans. Nucl. Sci. 58 2845 14 Cao X, Xiao L, Huo M, Wang T, Li A, Qi C and Wang J arXiv: 1608.01345 15 Wangyuan Zhang and Tao Li 2008 41st IEEE/ACM International Symposium on Microarchitecture, November 8, 2008, Lake Como, Italy, p. 435 16 Ye B, Mo L, Liu T, Jie L, Li D, Zhao P, Cai C, He Z, Sun Y, Hou M and Liu J 2019 Chin. Phys. B 29 026101 17 Agostinelli S, Allison J, Amako K al, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S and Barrand G 2003 Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 506 250 18 Se C A and Nm A Cypress Semiconductor 2146445 87123 505 19 Baumann R 2005 IEEE Des. & Test Comput. 22 258 20 Reed R A, Weller R A, Mendenhall M H, Lauenstein J M, Warren K M, Pellish J A, Schrimpf R D, Sierawski B D, Massengill L W, Dodd P E, Shanevfelt M R, Felix J A, Schwank J R, Haddad N K, Lawrence R K, Bowman J H and Conde K 2007 IEEE Trans. Nucl. Sci. 54 2312 21 Zhang Z, Lei Z, Tong T, Li X, Xi K, Peng C, Shi Q, He Y, Huang Y and En Y 2019 IEEE Trans. Nucl. Sci. 66 1368 22 Miller F, Weulersse C, Carri\'ere T, Guibbaud N, Morand S and Gaillard R 2013 IEEE Trans. Nucl. Sci. 60 2789 23 Li P, Guo W, Zhao Z and Zhang M 2015 CCF Conference on Computer Engineering and Technology, October 18, 2015, Berlin, Germany, p. 164 24 Kauppila J S, Kay W H, Haeffner T D, Rauch D L, Assis T R, Mahatme N N, Gaspard N J, Bhuva B L, Alles M L, Holman W T and Massengill L W 2015 IEEE Trans. Nucl. Sci. 62 2613 25 Hasanbegovic A and Aunet S 2016 IEEE Trans. Nucl. Sci. 63 2962 26 Chen R M, Diggins Z J, Mahatme N N, Wang L, Zhang E X, Chen Y P, Zhang H, Liu Y N, Narasimham B, Witulski A F, Bhuva B L and Fleetwood D M 2017 IEEE Trans. Nucl. Sci. 64 2122 27 Liu T, Liu J, Xi K, Zhang Z, He D, Ye B, Yin Y, Ji Q, Wang B, Luo J, Sun Y and Zhai P 2018 IEEE Trans. Nucl. Sci. 65 1119 28 Geng C, Liu J, Zhang Z G, Hou M D, Sun Y M, Xi K, Gu S, Duan J L, Yao H J, Mo D and Luo J 2013 Sci. China: Phys. Mech. Astron. 56 1120 29 Zebrev G and Galimov A2017 IEEE Trans. Nucl. Sci. 64 2129 30 Infantino A, Al\'ía R G and Brugger M 2017 IEEE Trans. Nucl. Sci. 64 596 31 Watanabe Y, Kodama A, Tukamoto Y and Nakashima H 2005 AIP Conference Proceedings, May 24, 2005, New York, USA, p. 1646 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|