Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030503    DOI: 10.1088/1674-1056/abd15e
GENERAL Prev   Next  

Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation

Yulei Cao(曹玉雷)1, Peng-Yan Hu(胡鹏彦)2,†, Yi Cheng(程艺)3, and Jingsong He(贺劲松)1
1 Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; 2 College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China; 3 School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China
Abstract  Within the (2+1)-dimensional Korteweg-de Vries equation framework, new bilinear B\"acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation. By introducing an arbitrary function φ(y), a family of deformed soliton and deformed breather solutions are presented with the improved Hirota's bilinear method. By choosing the appropriate parameters, their interesting dynamic behaviors are shown in three-dimensional plots. Furthermore, novel rational solutions are generated by taking the limit of the obtained solitons. Additionally, two-dimensional (2D) rogue waves (localized in both space and time) on the soliton plane are presented, we refer to them as deformed 2D rogue waves. The obtained deformed 2D rogue waves can be viewed as a 2D analog of the Peregrine soliton on soliton plane, and its evolution process is analyzed in detail. The deformed 2D rogue wave solutions are constructed successfully, which are closely related to the arbitrary function φ(y). This new idea is also applicable to other nonlinear systems.
Keywords:  two-dimensional (2D) Korteweg-de Vries (KdV) equation      Bilinear method      B\"acklund transformation      Lax pair      deformed 2D rogue wave  
Received:  12 October 2020      Revised:  29 November 2020      Accepted manuscript online:  08 December 2020
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the National Natural Scinece Foundation of China (Grant Nos. 11671219, 11871446, 12071304, and 12071451).
Corresponding Authors:  Corresponding author. E-mail: pyhu@szu.edu.cn   

Cite this article: 

Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松) Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation 2021 Chin. Phys. B 30 030503

1 Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
2 Peregrine D H 1983 J. Aust. Math. Soc. B 25 16
3 Guo L J, Wang L H, Cheng Y and He J S 2017 Commun. Nonlinear Sci. Numer. Simulat. 52 11
4 Zhang Y S, Guo L J, Chabchoub A and He J S 2017 Rom. J. Phys. 62 102
5 Zhang G Q and Yan Z Y 2018 Commun. Nonlinear Sci. Numer. Simulat. 62 117
6 He J S, Xu S W and Porsezian K 2012 Phys. Rev. E 86 066603
7 Li R M, Geng X G and Xue B 2020 J. Nonlinear Math. Phys. 27 279
8 Yang J and Zhu Z N 2018 Chaos 28 093103
9 Ling L M, Feng B F and Zhu Z N 2016 Physica D 327 13
10 Cao Y L, He J S, Cheng Y and Mihalache D 2020 Nonlinear Dyn. 99 3013
11 Gai L T, Ma W X and Li M C 2020 Phys. Lett. A 384 126178
12 Rao J G, Zhang Y S, Fokas A S and He J S 2018 Nonlinerity 31 4090
13 Liu W H, Zhang Y F and Shi D D 2019 Phys. Lett. A 383 97
14 Rao J G, Wang L H, Liu W and He J S 2017 Theor. Math. Phys. 193 1783
15 Cao Y L, Malomed B A and He J S 2018 Chaos Soliton. Fract. 114 99
16 Ohta Y and Yang J K 2013 J. Phys. A: Math. Theor. 46 105202
17 Rao J G, Mihalache D, Cheng Y and He J S 2019 Phys. Lett. A 383 1138
18 Zhang Y S, Rao J G, Porsezian K and He J S 2019 Nonlinear Dyn. 95 1133
19 Elawady E and Moslem W M 2011 Phys. Plasmas 18 082306
20 Bailung H, Sharma S K and Nakamura Y 2011 Phys. Rev. Lett. 107 255005
21 Bludov Y V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 2962
22 Bludov Y V, Konotop V V and Akhmediev N 2010 Eur. Phys. J. Spec. Top. 185 169
23 Stenflo L and Marklund M 2010 J. Plasma Phys. 76 293
24 Montina A, Bortolozzo U, Residori S and Arecchi F T 2009 Phys. Rev. Lett. 103 173901
25 Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
26 Mihalache D 2017 Rom. Rep. Phys. 69 403
27 Ganshin A N, Efimov V B, Kolmakov G V, Mezhov-Deglin L P and Mcclintock P V E 2008 Phys. Rev. Lett. 101 065303
28 Guo L J, He J S, Wang L H, Cheng Y, Frantzeskakis D J, Bremer T S and Kevrekidis P G 2020 Phys. Rev. Research 2 033376
29 Boiti M, Leon J J P, Manna M and Pempinelli F 1986 Inverse Probl. 2 271
30 Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
31 Estevez P G and Leble S 1995 Inverse Probl. 11 925
32 Leble S B and Ustinov N V 1991 Inverse Probl. 10 617
33 Hirota R and Satsma J 1994 J. Phys. Soc. Jpn. 40 611
34 Ablowitz M J and Clarkson P A1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
35 Delisle L and Mosaddeghi M 2013 J. Phys. A: Math. Theor. 46 115203
36 Lue X, Tian B, Sun K and Wang P 2010 J. Math. Phys. 51 113506
37 Luo L 2011 Phys. Lett. A 375 1059
38 Wang C J 2017 Nonlinear Dyn. 87 2635
39 Clarkson P A and Mansfield E L 1994 Nonlinearity 7 795
40 Tian B and Gao Y T 1996 Chaos Soliton Fract. 7 1497
41 Lou S Y 1995 J. Phys. A: Math. Theor. 28 7227
42 Hu H C, Tang X Y, Lou S Y and Liu Q P 2004 Chaos Soliton Fract. 22 327
43 Chen Y, Wang Q and Li B 2004 Commun. Theor. Phys. 42 655
44 Fan E G 2009 J. Phys. A: Math. Theor. 42 095206
45 Luo L 2010 Commun. Theor. Phys. 54 208
46 Chen Y R, Song M and Liu Z R 2015 Nonlinear Dyn. 82 333
47 Liu Y Q and Wen X Y 2019 Adv. Diff. Equa. 2019 332
48 Wang C J 2016 Nonlinear Dyn. 84 697
49 Gilson C, Lambert F, Nimmo J and Willox R 1996 Proc. Roy. Soc. Lond. A 452 223
50 Bell E T 1935 Ann. Math. 35 258
51 Fan E G 2011 Phys. Lett. A 375 493
52 Luo L 2019 Appl. Math. Lett. 94 94
53 Lambert F and Springael J 2001 Chaos Soliton Fract. 12 2821
54 Hirota R2004 The direct method in soliton theory (Cambridge: Cambridge University Press)
55 Ablowitz M J and Satsuma J 1979 J. Math. Phys. 20 1496
[1] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[2] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[3] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[4] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[5] High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
Yun-Fei Yue(岳云飞), Jin Lin(林机), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(1): 010202.
[6] Interaction properties of solitons for a couple of nonlinear evolution equations
Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir. Chin. Phys. B, 2021, 30(1): 010502.
[7] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[8] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[9] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[10] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[11] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
Feng Yuan(袁丰), Jing-Song He(贺劲松), Yi Cheng(程艺). Chin. Phys. B, 2019, 28(10): 100202.
[12] A note on “Lattice soliton equation hierarchy and associated properties”
Xi-Xiang Xu(徐西祥), Min Guo(郭敏). Chin. Phys. B, 2019, 28(1): 010202.
[13] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[14] Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军). Chin. Phys. B, 2018, 27(3): 030504.
[15] Non-autonomous discrete Boussinesq equation:Solutions and consistency
Nong Li-Juan (农丽娟), Zhang Da-Juan (张大军). Chin. Phys. B, 2014, 23(7): 070202.
No Suggested Reading articles found!