|
|
Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity |
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏)† |
1 Department of Physics, Capital Normal University, Beijing 100048, China |
|
|
Abstract We present a deterministic nondestructive hyperentangled Bell state analysis protocol for photons entangled in three degrees of freedom (DOFs), including polarization, spatial-mode, and time-bin DOFs. The polarization Bell state analyzer and spatial-mode Bell state analyzer are constructed by polarization parity-check quantum nondemolition detector (P-QND) and spatial-mode parity-check quantum nondemolition detector (S-QND) using cross-Kerr nonlinearity, respectively. The time-bin Bell state analyzer is constructed by the swap gate for polarization state and time-bin state of a photon (P-T swap gate) and P-QND. The Bell states analyzer for one DOF will not destruct the Bell states of other two DOFs, so the polarization-spatial-time-bin hyperentangled Bell states can be determinately distinguished without destruction. This deterministic nondestructive state analysis method has useful applications in quantum information protocols.
|
Received: 24 November 2020
Revised: 26 December 2020
Accepted manuscript online: 04 January 2021
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604226) and Science and Technology Program Foundation of the Beijing Municipal Commission of Education of China (Grants No. CIT&TCD201904080). |
Corresponding Authors:
†Corresponding author. E-mail: renbaocang@cnu.edu.cn
|
Cite this article:
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏) Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity 2021 Chin. Phys. B 30 030304
|
1 Ekert A K 1991 Phys. Rev. Lett. 67 661 2 Bennett C H, Brassard G and David Mermin N 1992 Phys. Rev. Lett. 68 557 3 Li X, Yuan H W, Zhang C M and Wang Q 2020 Chin. Phys. B 29 070303 4 Zhou N R, Zhu K N and Zou X F 2019 Ann. Phys. (Berlin) 531 1800520 5 Li H H, Gong L H and Zhou N R 2020 Chin. Phys. B 29 110304 6 Gao F 2020 Quant. Engineering 2 e33 7 Li Y 2020 Quant. Engineering 2 e46 8 Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 9 Liu X S, Long G L, Tong D M and Li F 2002 Phys. Rev. A 65 022304 10 Bennett C H, Brassard G, Cr\'epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 11 Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B 29 060301 12 Hillery M, Bu\vzek V and Berthiaume A 1999 Phys. Rev. A 59 1829 13 Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162 14 Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307 15 Luo G F, Zhou R G and Hu W W 2019 Chin. Phys. B 28 040302 16 \.Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287 17 Long G L and Liu X S 2002 Phys. Rev. A 65 032302 18 Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317 19 Deng F G and Long G L 2004 Phys. Rev. A 69 052319 20 Zhou Z R, Sheng Y B, Niu P H, Yin L G, Long G L and Hanzo L 2020 Sci. China: Phys., Mech. Astron. 63 230362 21 He R, Ma J G and Wu J W 2019 EPL 127 50006 22 Chen S S, Zhou L, Zhong W and Sheng Y B 2018 Sci. China Phys. Mech. Astron. 61 090312 23 Zhou L, Sheng Y B and Long G L 2020 Sci. Bull. 65 12 24 Zhou L and Sheng Y B 2015 Phys. Rev. A 92 042314 25 Sheng Y B and Zhou L Scientific Reports 5 13453 26 Li T, Miranowicz A, Xia K and Nori F 2019 Phys. Rev. A 100 052302 27 Kwiat P G 1997 J. Modern Opt. 44 2173 28 Yabushita A and Kobayashi T 2004 Phys. Rev. A 69 013806 29 Schuck C, Huber G, Kurtsiefer C and Weinfurter H 2006 Phys. Rev. Lett. 96 190501 30 Barbieri M, Vallone G, Mataloni P and De Martini F 2007 Phys. Rev. A 75 042317 31 Vallone G, Ceccarelli R, De Martini F and Mataloni P 2009 Phys. Rev. A 79 030301(R) 32 Barbieri M, Cinelli C, Mataloni P and De Martini F 2005 Phys. Rev. A 72 052110 33 Barreiro J T, Langford N K, Peters N A and Kwiat P G 2005 Phys. Rev. Lett. 95 260501 34 Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282 35 Kwiat P G and Weinfurter H 1998 Phys. Rev. A 58 2623(R) 36 Walborn S P, P\'adua S and Monken C H 2003 Phys. Rev. A 68 042313 37 Wilde M M and Uskov D B 2009 Phys. Rev. A 79 022305 38 Li T, Wang G Y, Deng F G and Long G L 2016 Sci. Rep. 6 20677 39 Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902 40 Bru\ss D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901 41 Wang T J, Song S Y and Long G L 2012 Phys. Rev. A 85 062311 42 Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901 43 Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307 44 Li X H 2010 Phys. Rev. A 82 044304 45 Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305 46 Wu X D, Zhou L, Zhong W and Sheng Y B 2020 Quant. Inf. Process. 19 354 47 Zou Z K, Zhou L, Zhong W and Sheng Y B 2020 Europhys. Lett. 131 40005 48 Cui Z X, Zhong W, Zhou L and Sheng Y B 2019 Sci. China Phys. Mech. Astron. 62 110311 49 Li X H and Ghose S 2017 Phys. Rev. A 96 020303(R) 50 Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318 51 Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516 52 Ren B C, Wei H R, Hua M, Li T and Deng F G 2012 Opt. Express 20 24664 53 Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309 54 Wang T J, Liu L L, Zhang R, Cao C and Wang C 2015 Opt. Express 23 9284 55 Wang G Y, Liu Q and Deng F G 2016 Phys. Rev. A 94 032319 56 Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302 57 Li X H and Ghose S 2015 Phys. Rev. A 91 062302 58 Wei T C, Barreiro J T and Kwiat P G 2007 Phys. Rev. A 75 060305(R) 59 Graham T M, Zeitler C K and Kwiat P G2015 in Frontiers in Optics, OSA Technical Digest(Washington, DC: Optical Society of America) paper FTh3D.4 60 Gao C Y, Ren B C, Zhang Y X and Deng F G Appl. Phys. Express 13 027004 61 Gao C Y, Ren B C, Zhang Y X, Ai Q and Deng F G 2019 Ann. Phys. (Berlin) 531 1900201 62 Zeng Z and Zhu K D 2020 Laser Phys. Lett. 17 075203 63 Zeng Z and Zhu K D 2020 New J. Phys. 22 083051 64 Wang T J, Lu Y and Long G L 2012 Phys. Rev. A 86 042337 65 Li X H and Ghose S 2016 Phys. Rev. A 93 022302 66 Li X H and Ghose S 2016 Opt. Express 24 18388 67 Cao C, Zhang L, Han Y H, Yin P P, Fan L, Duan Y W and Zhang R 2020 Opt. Express 28 2857 68 Xia Y, Chen Q Q, Song J and Song H S 2012 J. Opt. Soc. Am. B 29 1029 69 Liu Q, Wang G Y, Ai Q, Zhang M and Deng F G Scientific Reports 6 22016 70 Wang M Y, Yan F L and Gao T 2018 Laser Physics Letters 15 125206 71 Soudagar Y, Bussi\`eres F, Berl\'ín G, Lacroix S, Fernandez J M and Godbout N 2007 J. Opt. Soc. Amer. B 24 226 72 Kalamidas D Phys. Lett. A 343 331 73 Han X, Hu S, Guo Q, Wang H F and Zhang S 2015 Quant. Inf. Process. 14 1919 74 Dong L, Wang J X, Li Q Y, Shen H Z, Dong H K, Xiu X M and Oh C H 2016 Phys. Rev. A 93 012308 75 Liu A P, Cheng L Y, Guo Q, Zhang S and Zhao M X 2017 Sci. Rep. 7 43675 76 Wittmann C, Andersen U L, Takeoka M, Sych D and Leuchs G 2010 Phys. Rev. A 81 062338 77 Feizpour A, Xing X X and Steinberg A M 2011 Phys. Rev. Lett. 107 133603 78 He B, Lin Q and Simon C 2011 Phys. Rev. A 83 053826 79 Zhu C J and Huang G X 2011 Opt. Express 19 23364 80 Hoi I C, Kockum A F, Palomaki T, Stace T M, Fan B, Tornberg L, Sathyamoorthy S R, Johansson G, Delsing P and Wilson C M 2013 Phys. Rev. Lett. 111 053601 81 Sathyamoorthy S R, Tornberg L, Kockum A F, Baragiola B Q, Combes J, Wilson C M, Stace T M and Johansson G 2014 Phys. Rev. Lett. 112 093601 82 Xiong F L, Yang W L and Feng M 2020 Chin. Phys. B 29 040302 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|