Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 020304    DOI: 10.1088/1674-1056/26/2/020304
GENERAL Prev   Next  

Probabilistic direct counterfactual quantum communication

Sheng Zhang(张盛)
Department of Electronic Technology, China Maritime Police Academy, Ningbo 315801, China
Abstract  It is striking that the quantum Zeno effect can be used to launch a direct counterfactual communication between two spatially separated parties, Alice and Bob. So far, existing protocols of this type only provide a deterministic counterfactual communication service. However, this counterfactuality should be payed at a price. Firstly, the transmission time is much longer than a classical transmission costs. Secondly, the chained-cycle structure makes them more sensitive to channel noises. Here, we extend the idea of counterfactual communication, and present a probabilistic-counterfactual quantum communication protocol, which is proved to have advantages over the deterministic ones. Moreover, the presented protocol could evolve to a deterministic one solely by adjusting the parameters of the beam splitters.
Keywords:  quantum communication      quantum cryptography      optical implementation of quantum information processing  
Received:  31 May 2016      Revised:  03 November 2016      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61300203).
Corresponding Authors:  Sheng Zhang     E-mail:  huoxingren112@163.com

Cite this article: 

Sheng Zhang(张盛) Probabilistic direct counterfactual quantum communication 2017 Chin. Phys. B 26 020304

[1] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[2] Mattle K and Weinfurter H and Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
[5] Noh T G 2009 Phys. Rev. Lett. 103 230501
[6] Sun Y and Wen Q Y 2010 Phys. Rev. A 82 052318
[7] Bennett C H, Brassard G, et al. 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, December 9-12, 1984, Bangalore, India, p. 175
[8] Elitzur A C and Vaidman L 1993 Found. Phys. 23 987
[9] Kwiat P G et al. 1999 Phys. Rev. Lett. 83 4725
[10] Noh T G and Hong C K 1999 Quantum Semiclass. Opt. 10 637
[11] Zhang S and Wang J and Tang C J 2013 Commun. Theor. Phys. 10 637
[12] Yin Z Q, Li H W, Chen W, Han Z F and Guo G C 2010 Phys. Rev. A 82 042335
[13] Zhang S, Wang J and Tang C J 2012 Chin. Phys. B 21 060303
[14] Zhang S, Wang J and Tang C J 2012 Europhys. Lett. 98 30012
[15] Liu Y, Ju L, Liang X L, Tang S B, Tu G L, Zhou S, Peng L, Chen C Z, Chen K, Chen T Y, et al. 2012 Phys. Rev. Lett. 109 030501
[16] Brida G, Cavanna A, Degiovanni I P, Genovese M and Traina P 2012 Laser Phys. Lett. 9 247
[17] Salih H, Li Z H, Al-Amri M and Zubairy M S 2013 Phys. Rev. Lett. 110 170502
[18] Vaidman L 2007 Phys. Rev. Lett. 98 160403
[19] Salih H 2014 Phys. Rev. A 90 012333
[20] Shenoy A, Srikanth R and Srinivas T 2014 Phys. Rev. A 89 052307
[21] Shenoy H A, Srikanth R and Srinivas T 2013 Europhysics Lett. 103 60008
[22] Guo Q, Cheng L Y, Chen L, Wang H F and Zhang S 2014 arXiv: 1404.6401 [quant-ph]
[23] Greiner W 2001 Quantum Mechanics: An introduction (Berlin: Springer)
[24] Hosten O, Rakher M T, Barreiro J T, Peters N A and Kwiat P G 2006 Nature 439 949
[25] Mitchison G Jozsa R 2007 arXiv: quant-ph/0606092v3
[26] Vaidman L 2016 arXiv: 1511.006615v2 [quant-ph]
[27] Vaidman L 2016 arXiv: 1605.02181v1 [quant-ph]
[28] Marlow A R 1978 Mathematical Foundations of Quantum Theory. (New York: Academic Press) pp. 36
[1] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[2] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[3] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[4] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[5] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[6] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[7] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[8] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[9] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[10] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[11] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[12] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[13] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[14] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[15] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
No Suggested Reading articles found!