Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 110303    DOI: 10.1088/1674-1056/ac6b1f
GENERAL Prev   Next  

Analysis of atmospheric effects on the continuous variable quantum key distribution

Tao Liu(刘涛)1,2,3,†, Shuo Zhao(赵硕)1, Ivan B. Djordjevic4, Shuyu Liu(刘舒宇)1, Sijia Wang(王思佳)1, Tong Wu(吴彤)1, Bin Li(李斌)1, Pingping Wang(王平平)1, and Rongxiang Zhang(张荣香)5
1 Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China;
2 Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, China;
3 Baoding Key Laboratory of Optical Fiber Sensing and Optical Communication Technology, North China Electric Power University, Baoding 071003, China;
4 Department of Electrical and Computer Engineering, University of Arizona, 1230 E Speedway Blvd., Tucson, Arizona 85721, USA;
5 College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  Atmospheric effects have significant influence on the performance of a free-space optical continuous variable quantum key distribution (CVQKD) system. In this paper, we investigate how the transmittance, excess noise and interruption probability caused by atmospheric effects affect the secret-key rate (SKR) of the CVQKD. Three signal wavelengths, two weather conditions, two detection schemes, and two types of attacks are considered in our investigation. An expression aims at calculating the interruption probability is proposed based on the Kolmogorov spectrum model. The results show that a signal using long working wavelength can propagate much further than that of using short wavelength. Moreover, as the wavelength increases, the influence of interruption probability on the SKR becomes more significant, especially within a certain transmission distance. Therefore, interruption probability must be considered for CVQKD by using long-signal wavelengths. Furthermore, different detection schemes used by the receiver will result in different transmission distances when subjected to individual attacks and collective attacks, respectively.
Keywords:  atmospheric effect      continuous variable key distribution      free space quantum communication      secret-key rate  
Received:  03 January 2022      Revised:  10 April 2022      Accepted manuscript online:  28 April 2022
PACS:  03.67.Hk (Quantum communication)  
  42.68.Bz (Atmospheric turbulence effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071180) and Fundamental Research Funds for the Central Universities, China (Grant No. 2020MS099).
Corresponding Authors:  Tao Liu     E-mail:  taoliu@ncepu.edu.cn

Cite this article: 

Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香) Analysis of atmospheric effects on the continuous variable quantum key distribution 2022 Chin. Phys. B 31 110303

[1] Miao E L, Han Z F, Gong S S, Zhang T, Diao D S and Guo G C 2005 New J. Phys. 7 215
[2] Peng C Z, Yang T, Bao X H, Zhang J, Jin X M, Feng F Y, Yang B, Yang J, Yin J, Zhang Q, Li N, Tian B L and Pan J W 2005 Phys. Rev. Lett. 94 150501
[3] Raj A, Selvi J and Durairaj S 2015 Appl. Opt. 54 802
[4] Cui X Z, Yin X L, Chang H, Zhang Z C, Wang Y J and Wu G H 2017 Chin. Phys. B 26 114207
[5] Andrews L C and Phillips R L 2005 Laser Beam Propagation through Random Media (2nd edn.)(Washingon: SPIE PRESS) pp. 1-783
[6] Fante R L 1980 Proc. IEEE 68 1424
[7] Barbier P R, Rush D W, Plett M L and Polak-Dingels P 1998 SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, October 20, 1998, San Diego,CA, United States, 93
[8] Vasylyev D, Semenov A A and Vogel W 2019 Int. J. Theor. Phys. 58 3746
[9] Chai G, Liang K X, Liu W Q, Huang P, Cao Z W and Zeng G H 2019 Int. J. Theor. Phys. 58 3746)
[10] Zhao W, Liao Q, Huang D and Guo Y 2019 Quantum. Inf. Proc. 18 39
[11] Wang S Y, Huang P, Wang T and Zeng G H 2018 New. J. Phys. 20 083037
[12] Mahlobogwane Z, Owolawi P A and Sokoya O 2018 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD), August 6-7, 2018, Durban, South Africa, p. 1
[13] Liu T, Zhang J Z, Lei Y X, Zhang R X and Sun J F 2019 J. Mod. Opt. 66 986
[14] Xu J C, Zhang Y X, Wang J Y and Jia J J 2011 Optik 122 586
[15] Hughes R J and Nordholt J E 2017 Nat. Photon. 11 456
[16] Liao S K, Yong H L, Liu C, et al. 2017 Nat. Photon. 11 509
[17] Büchter K F, Herrmann H, Langrock C, Fejer M M and Sohler W 2009 Opt. Lett. 34 470
[18] Miguel N and Antonio A 2005 Phys. Rev. Lett. 94 020505
[19] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W and Grangier P 2007 Phys. Rev. A 76 042305
[20] Qu Z and Djordjevic I B 2018 IEEE. Photon. J. 10 1943
[21] Liu W Q, Peng J Y, Huang P, Huang D and Zeng G H 2017 Opt. Express 25 19429
[22] Huang B, Huang Y M and Peng Z M 2019 Opt. Express 27 20621
[23] Djordjevic I B 2019 IEEE. Access 5 147399
[24] Ricklin J C, Hammel S M, Eaton F D and Lachinova S 2006 J. Opt.Fiber Commun. Rep. 3 111
[25] Kim I I, Mcarthur B and Korevaar E J 2001 Proc. SPIE 4214
[26] Qi B, Lougovski P, Pooser R, Grice W and Bobrek M 2015 Phys. Rev. X 5 041009
[27] Liorni C, Kampermann H and Bruss D 2019 New J. Phys. 21 093055
[28] Bedington R, Arrazola J M and Ling A 2017 Npj. Quantum. Inform. 3 30
[1] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[2] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[5] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[6] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[7] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[8] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[9] Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides
Jian-Shuang Liu(刘建双), Ya Yang(杨亚), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2022, 31(11): 110301.
[10] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[11] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[12] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[13] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[14] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[15] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
No Suggested Reading articles found!