Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 090302    DOI: 10.1088/1674-1056/26/9/090302
GENERAL Prev   Next  

Cancelable remote quantum fingerprint templates protection scheme

Qin Liao(廖骎)1, Ying Guo(郭迎)1, Duan Huang(黄端)1,2
1 School of Information Science and Engineering, Central South University, Changsha 410083, China;
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, and Center of Quantum Information Sensing and Processing, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  

With the increasing popularity of fingerprint identification technology, its security and privacy have been paid much attention. Only the security and privacy of biological information are insured, the biological technology can be better accepted and used by the public. In this paper, we propose a novel quantum bit (qbit)-based scheme to solve the security and privacy problem existing in the traditional fingerprint identification system. By exploiting the properties of quantum mechanics, our proposed scheme, cancelable remote quantum fingerprint templates protection scheme, can achieve the unconditional security guaranteed in an information-theoretical sense. Moreover, this novel quantum scheme can invalidate most of the attacks aimed at the fingerprint identification system. In addition, the proposed scheme is applicable to the requirement of remote communication with no need to worry about its security and privacy during the transmission. This is an absolute advantage when comparing with other traditional methods. Security analysis shows that the proposed scheme can effectively ensure the communication security and the privacy of users' information for the fingerprint identification.

Keywords:  quantum communication      fingerprint identification      cancelable template  
Received:  22 February 2017      Revised:  15 May 2017      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.67.Dd (Quantum cryptography and communication security)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61379153 and 61572529).

Corresponding Authors:  Ying Guo, Duan Huang     E-mail:  yingguo@csu.edu.cn;duan.huang@foxmail.com

Cite this article: 

Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端) Cancelable remote quantum fingerprint templates protection scheme 2017 Chin. Phys. B 26 090302

[1] Cappelli R, Lumini A and Maltoni D 2007 IEEE Transactions on Pattern Analysis and Machine Intelligence 29 1489
[2] Ratha N, Connell J and Bolle R 2001 IBM Systems Journal 40 614
[3] K J A, Karthik N and Abhishek N 2008 Journal on Advances in Signal Processing 2008 1
[4] Nagar A, Nandakumar K, Jain A K 2010 Proceedings of SPIE-The International Society for Optical Engineering 7541 175
[5] Ang R, Safavinaini R and Mcaven L 2005 Information Security and Privacy, Australasian Conference, July 4-6, ACISP Brisbane, p. 242
[6] Teoh A B J, Toh K A and Yip W K 2007 International Conference on Advances in Biometrics, Springer-Verlag, p. 435
[7] Wang S and Hu J 2012 Pattern Recognition 45 4129
[8] Lee C and Kim J 2010 Journal of Network and Computer Applications 33 236
[9] Ratha N K, Chikkerur S, Connell J H and Bolle R M 2007 IEEE Transactions on Pattern Analysis and Machine Intelligence 29 561
[10] Jain A K, Ross A A and Nandakumar K 2011 Security Of Biometric Systems (New York: Springer) p. 259
[11] Juels A and Sudan M 2004 IEEE International Symposium on Information Theory 38 408
[12] Dodis Y and Reyzin L 2004 Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy (Berlin: Springer) pp. 97-139
[13] Yang W, Hu J and Wang S 2014 IEEE Transactions on Information Forensics and Security 9 1179
[14] Abellanas, Manuel, Hurtado and Ferran 1999 Information Processing Letters 71 221
[15] Khanban A A and Edalat A 2003 Proc.canad.conf.on Comput.geom 2011 94
[16] Spiller T P 1997 Proceedings of the IEEE 84 1719
[17] Nielson M A 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp. 558-559
[18] Mayers D 2004 Journal of the Acm 48 351
[19] Barrett M D, Chiaverini J, Schaetz T, Britton1. J, Itano W M, Jost J D, Knill E, Langer C, Leibfried D, Ozeri R and Wineland D J 2004 Nature 429 737
[20] Jennewein T, Simon C, Weihs G, Weinfurter H and Zeilinger A 2000 Phys. Rev. Lett. 84 4729
[21] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175-179
[22] Valerio S and Renato R 2008 Phys. Rev. Lett. 100 200501
[23] Yousuke S, Ryutaroh M and Tomohiko U 2010 J. Phys. A 43 495302
[24] Raymond Y Q C and Valerio S 2009 New J. Phys. 11 045024
[25] Bang J Y and Berger M S 2006 Phys. Rev. D 74 345
[26] Wootters W K and Zurek W H 1982 Nature 299 802
[27] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2007 Rev. Mod. Phys. 81 865
[28] Hines A P and Stamp P C E 2007 Phys. Rev. A 75 1004
[29] Rafaeli S 2003 Acm Computing Surveys 35 309
[30] Ye L, Yao C and Guo G 2001 Chin. Phys. 10 1001
[31] Riebe M, Haffner H, Roos C F, Hansel W, Benhelm J, Lancaster G P T, Korber T W, Becher C, Schmidt-Kaler F, James D F V and Blatt R 2004 Nature 429 734
[32] Pakniat R, Tavassoly M K and Zandi M H 2016 Chin. Phys. B 25 100303
[33] Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C, Shapiro J H and Seth L 2011 Rev. Mod. Phys. 84 621
[34] Ma H X, Bao W S, Li H W and Zhou C 2016 Chin. Phys. B 25 080309
[1] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[2] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[3] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[4] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[5] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[6] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[7] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[8] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[9] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[10] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[11] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[12] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[13] Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(6): 060307.
[14] Continuous variable quantum key distribution
Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀). Chin. Phys. B, 2017, 26(4): 040303.
[15] Optimal multi-photon entanglement concentration with the photonic Faraday rotation
Lan Zhou(周澜), Dan-Dan Wang(王丹丹), Xing-Fu Wang(王兴福), Shi-Pu Gu(顾世浦), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(2): 020302.
No Suggested Reading articles found!