|
|
Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity |
Lu-Cong Lu(陆路聪)1,2, Guan-Yu Wang(王冠玉)3, Bao-Cang Ren(任宝藏)2, Mei Zhang(章梅)1, Fu-Guo Deng(邓富国)1,4 |
1 Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China; 2 Department of Physics, Capital Normal University, Beijing 100048, China; 3 College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China; 4 NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia |
|
|
Abstract The decoherence of entangled states caused by the noisy channel is a salient problem for reducing the fidelity of quantum communication. Here we present a heralded two-photon entanglement purification protocol (EPP) using heralded high-fidelity parity-check gate (HH-PCG), which can increase the entanglement of nonlocal two-photon polarization mixed state. The HH-PCG is constructed by the input-output process of nitrogen-vacancy (NV) center in diamond embedded in a single-sided optical cavity, where the errors caused by the imperfect interaction between the NV center-cavity system and the photon can be heralded by the photon detector. As the unwanted components can be filtrated due to the heralded function, the fidelity of the EPP scheme can be enhanced considerably, which will increase the fidelity of quantum communication processing.
|
Received: 28 August 2019
Revised: 04 November 2019
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11674033, 11474026, 11604226, and 11475021) and Science and Technology Program Foundation of the Beijing Municipal Commission of Education of China (Grant Nos. KM201710028005 and CIT&TCD201904080). |
Corresponding Authors:
Bao-Cang Ren
E-mail: renbaocang@cnu.edu.cn
|
Cite this article:
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国) Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity 2020 Chin. Phys. B 29 010305
|
[1] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Lombardi E, Sciarrino F, Popescu S and De Martini F 2002 Phys. Rev. Lett. 88 070402
|
[3] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[4] |
Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282
|
[5] |
Bennett C H and Brassard G 1984 International Conference on Computers, Systems & Signal Processing (Bangalore, India 10-12 December 1984) pp. 175-179
|
[6] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[7] |
Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
|
[8] |
Buttler W T, Hughes R J, Kwiat P G, Lamoreaux S K, Luther G G, Morgan G L, Nordholt J E, Peterson C G and Simmons C M 1998 Phys. Rev. Lett. 81 3283
|
[9] |
Stucki D, Walenta N, Vannel F, Thew R T, Gisin N, Zbinden H, Gray S, Towery C R and Ten S 2009 New J. Phys. 11 075003
|
[10] |
Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X, Chen T Y, Zhang Q and Pan J W 2014 Phys. Rev. Lett. 113 190501
|
[11] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[12] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[13] |
Deng F G and Long G L 2004 Phys. Rev. A 69 052319
|
[14] |
Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q and Long G L 2016 Light: Sci. Appl. 5 e16144
|
[15] |
Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
|
[16] |
Niu P H, Zhou Z R, Lin Z S, Zhong W, Sheng Y B, Yin L G and Long G L 2018 Sci. Bull. 63 1345
|
[17] |
Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[18] |
Luo G F, Zhou R G and Hu W W 2019 Chin. Phys. B 28 40302
|
[19] |
Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
|
[20] |
Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
|
[21] |
Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D and Kimble H J 2007 Science 316 1316
|
[22] |
Sangouard N, Simon C, de Riedmatten H and Gisin N 2011 Rev. Mod. Phys. 83 33
|
[23] |
Denning E V, Gangloff D A, Atatüre M, Mork J and Le Gall C 2019 Phys. Rev. Lett. 123 140502
|
[24] |
Qiu T H, Li H, Xie M, Liu Q and Ma H Y 2019 Opt. Express 27 27477
|
[25] |
Dou J P, Li H, Pang X L, Zhang C N, Yang T H and Jin X M 2019 Acta Phys. Sin. 68 30307 (in Chinese)
|
[26] |
Muralidharan S, Kim J, Lütkenhaus N, Lukin M D and Jiang L 2014 Phys. Rev. Lett. 112 250501
|
[27] |
Rozpędek F, Yehia R, Goodenough K, Ruf M, Humphreys P C, Hanson R, Wehner S and Elkouss D 2019 Phys. Rev. A 99 052330
|
[28] |
Li Z D, Zhang R, Yin X F, Liu L Z, Hu Y, Fang Y Q, Fei Y Y, Jiang X, Zhang J, Li L, Liu N L, Xu F, Chen Y A and Pan J W 2019 Nat. Photon. 13 644
|
[29] |
Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[30] |
Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
|
[31] |
Sheng Y B, Pan J, Guo R, Zhou L and Wang L 2015 Sci. Chin. Phys. Mech. & Astron. 58 1
|
[32] |
Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
|
[33] |
Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
|
[34] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
|
[35] |
Li X H 2010 Phys. Rev. A 82 044304
|
[36] |
Sheng Y B and Zhou L 2014 Laser Phys. Lett. 11 085203
|
[37] |
Pan J W, Simon C, Brukner Ç and Zeilinger A 2001 Nature 410 1067
|
[38] |
Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
|
[39] |
Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
|
[40] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
|
[41] |
Gao W C, Cao C, Wang T J and Wang C 2017 Quantum Inf. Process. 16 182
|
[42] |
Ren B C and Deng F G 2013 Laser Phys. Lett. 10 115201
|
[43] |
Wang G Y, Liu Q and Deng F G 2016 Phys. Rev. A 94 032319
|
[44] |
Zhou L and Sheng Y B 2017 Ann. Phys. 385 10
|
[45] |
Chen Q, Yang W, Feng M and Du J 2011 Phys. Rev. A 83 054305
|
[46] |
Neumann P, Mizuochi N, Rempp F, Hemmer P, Watanabe H, Yamasaki S, Jacques V, Gaebel T, Jelezko F and Wrachtrup J 2008 Science 320 1326
|
[47] |
Maurer P C, Kucsko G, Latta C, Jiang L, Yao N Y, Bennett S D, Pastawski F, Hunger D, Chisholm N, Markham M, Twitchen D J, Cirac J I and Lukin M D 2012 Science 336 1283
|
[48] |
Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J and Awschalom D D 2009 Science 326 1520
|
[49] |
Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J and Jelezko F 2010 Science 329 542
|
[50] |
Pfaff W, Taminiau T H, Robledo L, Bernien H, Markham M, Twitchen D J and Hanson R 2013 Nat. Phys. 9 29
|
[51] |
Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 92 076401
|
[52] |
Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Mater. 8 383
|
[53] |
Togan E, Chu Y, Trifonov A S, Jiang L, Maze J, Childress L, Dutt M V G, Sorensen A S, Hemmer P R, Zibrov A S and Lukin M D 2010 Nature 466 730
|
[54] |
Park Y S, Cook A K and Wang H 2006 Nano Lett. 6 2075
|
[55] |
Barclay P E, Fu K M C, Santori C and Beausoleil R G 2009 Appl. Phys. Lett. 95 191115
|
[56] |
Englund D, Shields B, Rivoire K, Hatami F, Vučković J, Park H and Lukin M D 2010 Nano Lett. 10 3922
|
[57] |
Wolters J, Schell A W, Kewes G, Nüsse N, Schoengen M, Döscher H, Hannappel T, Löchel B, Barth M and Benson O 2010 Appl. Phys. Lett. 97 141108
|
[58] |
Bernien H, Hensen B, Pfaff W, Koolstra G, Blok M S, Robledo L, Taminiau T H, Markham M, Twitchen D J, Childress L and Hanson R 2013 Nature 497 86
|
[59] |
Hensen B, Bernien H, Dréau A E, Reiserer A, Kalb N, Blok M S, Ruitenberg J, Vermeulen R F L, Schouten R N, Abellán C, Amaya W, Pruneri V, Mitchell M W, Markham M, Twitchen D J, Elkouss D, Wehner S, Taminiau T H and Hanson R 2015 Nature 526 682
|
[60] |
Kalb N, Reiserer A A, Humphreys P C, Bakermans J J W, Kamerling S J, Nickerson N H, Benjamin S C, Twitchen D J, Markham M and Hanson R 2017 Science 356 928
|
[61] |
Dolde F, Fedder H, Doherty M W, Nöbauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F and Wrachtrup J 2011 Nat. Phys. 7 459
|
[62] |
Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H and Lukin M D 2013 Nature 500 54
|
[63] |
Zhang T, Liu G Q, Leong W H, Liu C F, Kwok M H, Ngai T, Liu R B and Li Q 2018 Nat. Commun. 9 3188
|
[64] |
Taminiau T H, Cramer J, van der Sar T, Dobrovitski V V and Hanson R 2014 Nat. Nanotechnol. 9 171
|
[65] |
Waldherr G, Wang Y, Zaiser S, Jamali M, Schulte-Herbrüggen T, Abe H, Ohshima T, Isoya J, Du J F, Neumann P and Wrachtrup J 2014 Nature 506 204
|
[66] |
Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303
|
[67] |
Eto Y, Noguchi A, Zhang P, Ueda M and Kozuma M 2011 Phys. Rev. Lett. 106 160501
|
[68] |
Wang C, Zhang Y, Jiao R Z and Jin G S 2013 Opt. Express 21 19252
|
[69] |
Hu C Y, Young A, O'Brien J L, Munro W J and Rarity J G 2008 Phys. Rev. B 78 085307
|
[70] |
An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303
|
[71] |
Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer)
|
[72] |
Reithmaier J P, Sęk G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197
|
[73] |
Peter E, Senellart P, Martrou D, Lemaître A, Hours J, Gérard J M and Bloch J 2005 Phys. Rev. Lett. 95 067401
|
[74] |
Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J and Kimble H J 2006 Nature 443 671
|
[75] |
Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu E L and Imamoğlu A 2007 Nature 445 896
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|