Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 040303    DOI: 10.1088/1674-1056/26/4/040303
REVIEW Prev   Next  

Continuous variable quantum key distribution

Yong-Min Li(李永民)1,2, Xu-Yang Wang(王旭阳)1,2, Zeng-Liang Bai(白增亮)1,2, Wen-Yuan Liu(刘文元)1,2, Shen-Shen Yang(杨申申)1,2, Kun-Chi Peng(彭堃墀)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  

Quantum key distribution enables unconditionally secure key distribution between two legitimate users. The information-theoretic security is guaranteed by the fundamental laws of quantum physics. Initially, the quantum key distribution protocol was proposed based on the qubits. Later on, it was found that quantum continuous variables can also be exploited for this target. The continuous variable quantum key distribution can build upon standard telecommunication technology and exhibits a higher secret key rate per pulse at a relatively short distance due to the possibility of encoding more than 1 bit per pulse. In this article, we review the current status of the continuous variable quantum key distribution research, including its basic principle, experimental implementations, security and future directions; the experimental progress in this field made by our group is also presented.

Keywords:  quantum key distribution      continuous variable      quantum optics      quantum communication  
Received:  21 November 2016      Revised:  28 December 2016      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61378010 and 11504219), the Key Project of the Ministry of Science and Technology of China (Grant No. 2016YFA0301403), the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011007-1), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China.

Corresponding Authors:  Yong-Min Li     E-mail:  yongmin@sxu.edu.cn

Cite this article: 

Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀) Continuous variable quantum key distribution 2017 Chin. Phys. B 26 040303

[1] Vernam G S 1926 J. Am. Inst. Elec. Eng. 55 109
[2] Rivest R L, Shamir A and Adleman L M 1978 Commun. ACM 21 120
[3] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 1984, India, p. 175
[4] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[5] Braunstein S L and Loock P 2005 Rev. Mod. Phys. 77 513
[6] Wang X B, Hiroshima T, Tomita A and Hayashi M 2007 Phys. Rep. 448 1
[7] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[8] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C Shapiro J H and Lioyd S 2012 Rev. Mod. Phys. 84 621
[9] Lo H W, Curty M and Tamaki K 2014 Nat. Photon. 8 595
[10] Elliott C, Colvin A, Pearson D, Pikalo O, Schlafer J and Yeh H Proceedings of SPIE 5815, Quantum Information and Computation III, March 28, 2005, Orlando, USA, p. 138
[11] Peev M, Pacher C, Alléaume R, et al. 2009 New J. Phys. 11 075001
[12] Stucki, Legré D M, Buntschu F, et al. 2011 New J. Phys. 13 123001
[13] Chen T Y, Liang H, Liu Y, Cai W Q, Ju L, Liu W Y, Wang J, Yin H, Chen K, Chen Z B, Peng C Z and Pan J W 2009 Opt. Express 17 6540
[14] Wang S, Chen W, Yin Z Q, Zhang Y, Zhang T, Li H W, Xu F X, Zhou Z, Yang Y, Huang D J, Zhang L J, Li F Y, Liu D, Wang Y G, Guo G C and Han Z F 2010 Opt. Lett. 35 2454
[15] Sasaki M, Fujiwara M, Ishizukaet H, et al. 2011 Opt. Express 19 10387
[16] Fröhlich B, Dynes J F, Lucamarini M, Sharpe A W, Yuan Z and Shields A J 2013 Nature 501 69
[17] Ralph T C 1999 Phys. Rev. A 61 010303
[18] Hillery M 2000 Phys. Rev. A 61 022309
[19] Reid M D 2000 Phys. Rev. A 62 062308
[20] Cerf N J, Lévy M and Assche G V 2001 Phys. Rev. A 63 052311
[21] Gottesman, D and Preskill J 2001 Phys. Rev. A 63 022309
[22] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[23] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett. 93 170504
[24] Lance A M, Symul T, Sharma V, Weedbrook C, Ralph T C and Lam P K 2005 Phys. Rev. Lett. 95 180503
[25] Su X L Wang W Z, Wang Y, Jia X J, Xie C D and Peng K C 2009 Europhys. Lett. 87 20005
[26] García-Patrón R and Cerf N J 2009 Phys. Rev. Lett. 102 130501
[27] Madsen L S, Usenko V C, Lassen M, Filip R and Andersen U L 2012 Nat. Commun. 3 1083
[28] Usenko V C and Filip R 2011 New J. Phys. 13 113007
[29] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tuaale-Brouri R, McLaughlin S W and Grangier P 2007 Phys. Rev. A 76 042305
[30] Grosshans F, Cerf N J, Wenger J, Tualle-Brouri R and Grangier P 2003 Quan. Inform. & Comput. 3 535
[31] Silberhorn C, Ralph T C, Lütkenhaus N and Leuchs G 2002 Phys. Rev. Lett. 89 167901
[32] Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[33] Legré M, Zbinden H and Gisin N 2006 Quantum Inform. Comput. 6 326
[34] Qi B, Huang L L, Qian L, Lo H K 2007 Phys. Rev. A 76 052323
[35] Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504
[36] Xuan Q D, Zhang Z S and Voss P L 2009 Opt. Express 17 24244
[37] Wang X Y, Bai Z L, Wang S F, Li Y M and Peng K C 2013 Chin. Phys. Lett. 30 010305
[38] Leverrier A, Alléaume R, Boutros J, Gilles Z and Philippe G 2008 Phys. Rev. A 77 042325
[39] Jouguet P, Kunz-Jacques S and Leverrier A 2011 Phys. Rev. A 84 062317
[40] Jouguet P, Elkouss D and Kunz-Jacques S 2014 Phys. Rev. A 90 042329
[41] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photon. 7 378
[42] Huang D, Lin D, Wang C, Liu W Q, Fang S H, Peng J Y, Huang P and Zeng G H 2015 Opt. Express 23 17511
[43] Wang X Y, Liu J Q, Li X F and Li Y M 2015 IEEE J. Quantum Electron. 51 5200206
[44] Wang X Y, Bai Z L, Du P Y, Li Y M and Peng K C 2012 Chin. Phys. Lett. 29 124202
[45] Liu J Q, Wang X Y, Bai Z L and Li Y M 2016 Acta Phys. Sin. 65 100303 (in Chinese)
[46] Li Y M, Wang N, Wang X Y and Bai Z L 2014 J. Opt. Soc. Am. B 31 2379
[47] Bai Z L, Wang X Y, Yang S S and Li Y M 2016 Sci. China-Phys. Mech. Astron. 59 614201
[48] Devetak I and Winter A 2005 Proc. R. Soc. A 461 207
[49] Grosshans F 2005 Phys. Rev. Lett. 94 020504
[50] Navascues M and Acin A 2005 Phys. Rev. Lett. 94 020505
[51] Wolf M M, Giedke G and Cirac J I 2006 Phys. Rev. Lett. 96 080502
[52] Navascués M, Grosshans, F and Acín A 2006 Phys. Rev. Lett. 97 190502
[53] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[54] Renner R and Cirac J I 2009 Phys. Rev. Lett. 102 110504
[55] Usenko V C and Filip R 2010 Phys. Rev. A 81 022318
[56] Furrer F, Franz T, Berta M, Leverrier A, Scholz V B, Tomamichel M and Werner R F 2012 Phys. Rev. Lett. 109 100502
[57] Weedbrook C, Pirandola S and Ralph T C 2012 Phys. Rev. A 86 022318
[58] Leverrier A, García-Patrón R, Renner R and Cerf N J 2013 Phys. Rev. Lett. 110 030502
[59] Walk N, Ralph T C, Symul T and Lam P K 2013 Phys. Rev. A 87 020303
[60] Furrer F 2014 Phys. Rev. A 90 042325
[61] Leverrier A 2015 Phys. Rev. Lett. 114 070501
[62] Usenko V C and Grosshans F 2015 Phys. Rev. A 92 062337
[63] Ben-Or M, Horodecki M, Leung D W, Mayers D and Oppenheim J 2005 In: Kilian J (ed.): TCC 2005, LNCS 3378, p. 386
[64] Renner R and König R 2005 In: Kilian J (ed.): TCC 2005, LNCS 3378, p. 407
[65] Diamanti E and Leverrier A 2015 Entropy 17 6072
[66] Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 88 022339
[67] Jouguet P, Kunz-Jacques S and Diamanti E 2013 Phys. Rev. A 87 062313
[68] Qin H, Kumar R and Alléaume R 2013 In: Lewis K L, Hollins R C, Merlet T J, Gruneisen M T, Dusek M, Rarity J G and Carapezza E M (ed.): Proceedings of SPIE 8899, Emerging Technologies in Security and Defence; and Quantum Security II; and Unmanned Sensor Systems X, September 23, 2013, Dresden, Germany, 8990N
[69] Ma X C, Sun S H, Jiang M and Liang L M 2013 Phys. Rev. A 87 052309
[70] Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C and Han Z F 2014 Phys. Rev. A 89 032304
[71] Jouguet P and Kunz-Jacques S 2015 Phys. Rev. A 91 022307.
[72] Qi B, Lougovski P, Pooser R, Grice W and Bobrek M 2015 Phys. Rev. X 5 041009
[73] Soh D B S, Brif C, Coles P J, Lütkenhaus N, Camacho R M, Urayama J and Sarovar M 2015 Phys. Rev. X 5 041010
[74] Huang D, Huang P, Lin D, Wang C and Zeng G H 2015 Opt. Lett. 40 3695
[75] Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[76] Marshall K and Weedbrook C 2014 Phys. Rev. A 90 042311
[77] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[78] Ma X F and Razavi M 2012 Phys. Rev. A 86 062319
[79] Zhou Y H, Yu Z W and Wang X B 2016 Phys. Rev. A 93 042324
[80] Li Z, Zhang Y C, Xu F, Peng X and Guo H 2014 Phys. Rev. A 89 052301
[81] Ma X C, Sun S H, Jiang M S, Gui M and Liang L M 2014 Phys. Rev. A 89 042335
[82] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S and Andersen U L 2015 Nat. Photon. 9 397
[83] Blandino R, Leverrier A, Barbieri M, Etesse J, Grangier P and Tualle-Brouri R 2012 Phys. Rev. A 86 012327
[84] Fiurasek J and Cerf N J 2012 Phys. Rev. A 86 060302
[85] Huang P, He G Q, Fang J and Zeng G H 2013 Phys. Rev. A 87 012317
[86] Li Z Y, Zhang Y C, Wang X Y, Xu B J, Peng X and Guo H 2016 Phys. Rev. A 93 012310
[87] Qi B, Zhu W, Qian L and Lo H K 2010 New J. Phys. 12 103042
[88] Kumar R, Qin H and Alléaume R 2015 New J. Phys. 17 043027
[89] Orieux A and Diamanti E 2016 J. Opt. 18 083002
[90] Zhang L J, Silberhorn C and Walmsley I A 2008 Phys. Rev. Lett. 100 110504
[91] Zhong T, Zhou H C, Horansky R D, Lee C, Verma V B, Lita A E, Restelli A, Bienfang J C, Mirin R P, Gerrits T, Nam S W, Marsili F, Shaw M D, Zhang Z S, Wang L G, Englund D, Wornell G W, Shapiro J H and Wong F N C 2015 New J. Phys. 17 022002
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[6] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[11] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[12] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[13] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[14] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[15] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
No Suggested Reading articles found!