Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060307    DOI: 10.1088/1674-1056/26/6/060307
GENERAL Prev   Next  

Multi-copy entanglement purification with practical spontaneous parametric down conversion sources

Shuai-Shuai Zhang(张帅帅)1,3, Qi Shu(祁舒)1,3, Lan Zhou(周澜)2, Yu-Bo Sheng(盛宇波)1
1 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Entanglement purification is to distill the high quality entanglement from the low quality entanglement with local operations and classical communications. It is one of the key technologies in long-distance quantum communication. We discuss an entanglement purification protocol (EPP) with spontaneous parametric down conversion (SPDC) sources, in contrast to previous EPP with multi-copy mixed states, which requires ideal entanglement sources. We show that the SPDC source is not an obstacle for purification, but can benefit the fidelity of the purified mixed state. This EPP works for linear optics and is feasible in current experiment technology.
Keywords:  quantum communication      entanglement      entanglement purification  
Received:  11 January 2017      Revised:  08 February 2017      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Qing Lan Project in Jiangsu Province, China, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Yu-Bo Sheng     E-mail:  shengyb@njupt.edu.cn

Cite this article: 

Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波) Multi-copy entanglement purification with practical spontaneous parametric down conversion sources 2017 Chin. Phys. B 26 060307

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[3] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[4] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 042305
[5] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q and Long G L 2016 Light Sci. Appl. 5 e16144
[6] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[7] Ekert A K 1991 Phys. Rev. Lett. 67 661
[8] Wang Q, Zhou X Y and Guo G C 2016 Sci. Rep. 6 35394
[9] Wang Q, Zhang C H and Wang X B 2016 Phys. Rev. A 93 032312
[10] Xu J S and Li C F 2015 Sci. Bull. 60 141
[11] Zhang C, Li C F and Guo G C 2015 Sci. Bull. 60 249
[12] Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
[13] Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303
[14] Chang Y, Zhang S B, Yan L L and Han G H 2016 Chin. Phys. B 24 050307
[15] Wang M Y, Yan F L and Gao T 2016 Sci. Rep. 6 29853
[16] Ding D, He Y Q, Yan F L and Gao T 2015 Acta Phys. Sin. 64 160301 (in Chinese)
[17] Ye T Y 2015 Sci. China-Phys. Mech. Astron. 58 040301
[18] Lu X M, Zhang L J, Wang Y G, Chen W, Huang D J, Li D, Wang S, He D Y, Yin Z Q, Zhou Y, Hui C and Han Z F 2016 Sci. China-Phys. Mech. Astron. 58 120301
[19] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[20] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[21] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[22] Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
[23] Li X H 2010 Phys. Rev. A 82 044304
[24] Deng F G 2011 Phys. Rev. A 83 062316
[25] Deng F G 2011 Phys. Rev. A 84 052312
[26] Sheng Y B and Zhou L 2014 Laser Phys. Lett. 11 085203
[27] Sheng Y B and Zhou L 2015 Sci. Rep. 5 7815
[28] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[29] Pan J W, Simon C and Zeilinger A 2001 Nature 410 1067
[30] Pan J W, Gasparonl S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
[31] Sangouard N, Simon C, Coudreau T and Gisin N 2008 Phys. Rev. A 78 050301
[32] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[33] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
[34] Xiao L, Wang C, Zhang W, Huang Y D, Peng J D and Long G L 2008 Phys. Rev. A 77 042315
[35] Wang C, Zhang Y and Jin G S 2011 Quantum Inform. Comput. 11 988
[36] Gonta D and van Loock P 2011 Phys. Rev. A 84 042303
[37] Sheng Y B, Zhou L and Long G L 2013 Phys. Rev. A 88 022302
[38] Zwerger M, Briegel H J and Dür W 2013 Phys. Rev. Lett. 110 260503
[39] Zwerger M, Briegel H J and Dür W 2014 Phys. Rev. A 90 012314
[40] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
[41] Wang G Y, Liu Q and Deng F G 2016 Phys. Rev. A 94 032319
[42] He Y Q, Ding D, Yan F L and Gao T 2015 J. Phys. B: At. Mol. Opt. Phys. 48 055501
[43] Zhou L and Sheng Y B 2016 Sci. Rep. 6 28813
[44] Dong D, Zhang Y L, Zou C L, Zou X B and Guo G C 2015 Chin. Phys. B 24 100306
[45] Feng X L, Gong S Q and Xu Z Z 2000 Phys. Lett. A 271 44
[46] Metwally N and Obada A S 2006 Phys. Lett. A 352 45
[47] Chi D P, Kim T and Lee S 2012 Phys. Lett. A 376 143
[48] Xu Y Y, Feng X L and Zhang Z M 2012 Chin. Opt. Lett. 10 042701
[49] JafarpourM and Ashrafpouri F 2015 Quantum Inform. Process. 14 607
[50] Cai C, Zhou L and Sheng Y B 2015 Chin. Phys. B 24 120306
[51] Deng F G, Ren B C and Li X H 2017 Sci. Bull. 62 46
[52] Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
[53] Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y and Pan J W 2016 Phys. Rev. Lett. 117 210502
[54] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516
[55] Zhang C, Huang Y F, Wang Zhao, Liu B H, Li C F and Guo G C 2016 Phys. Rev. Lett. 115 260402
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!