Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027801    DOI: 10.1088/1674-1056/abc238
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission

Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云)†, Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚)‡
College of Physics, Mechanical and Electrical Engineering Jishou University, Jishou 416000, China
Abstract  The spontaneous emission rate of a two-level quantum emitter (QE) near a gold nanorod is numerically investigated. Three different optical response models for the free-electron gas are adopted, including the classical Drude local response approximation, the nonlocal hydrodynamic model, and the generalized nonlocal optical response model. Nonlocal optical response leads to a blueshift and a reduction in the enhancement of the spontaneous emission rate. Within all the three models, the resonance frequency is largely determined by the aspect ratio (the ratio of the nanorod length to the radius) and increases sharply with decreasing aspect ratio. For nanorod with a fixed length, it is found that the larger the radius is, the higher the resonance frequency is, and the smaller the enhancement is. However, if the length of the nanorod increases, the peak frequency falls sharply, while the spontaneous emission enhancement grows rapidly. For nanorod with a fixed aspect ratio, the peak frequency decreases slowly with increasing nanorod size. Larger nanorod shows smaller nonlocal effect. At a certain frequency, there is an optimal size to maximize the enhancement of the spontaneous emission rate. Higher order modes are more affected by the nonlocal smearing of the induced charges, leading to larger blueshift and greater reduction in the enhancement. These results should be significant for investigating the spontaneous emission rate of a QE around a gold nanorod.
Keywords:  spatially nonlocal response      hydrodynamics      spontaneous emission rate      gold nanorod  
Received:  28 June 2020      Revised:  15 September 2020      Accepted manuscript online:  17 October 2020
PACS:  78.20.Bh (Theory, models, and numerical simulation)  
  42.50.-p (Quantum optics)  
  32.70.Jz (Line shapes, widths, and shifts)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11964010, 11564013 and 11464014), the Natural Science Foundation of Hunan Province (Grant No. 2020JJ4495), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 18C0558), and the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant Nos. CX2018B706 and CX20190876).
Corresponding Authors:  Corresponding author. E-mail: wxyyun@163.com Corresponding author. E-mail: huang122012@163.com   

Cite this article: 

Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚) Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission 2021 Chin. Phys. B 30 027801

1 Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
2 Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon. 2 496
3 Schuller J A, Barnard E S, Wenshan C, Young Chul J, White J S and Brongersma M L 2010 Nat. Mater. 9 193
4 Baranov D G, Wers\"all M, Cuadra J, Antosiewicz T J and Shegai T 2017 ACS Photon. 5 24
5 Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
6 Chikkaraddy R, De Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O and Baumberg J J 2016 Nature 535 127
7 Muskens O L, Giannini V, Sanchez-Gil J A and Gòmez Rivas J 2007 Nano Lett. 7 2871
8 Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, M\"ullen K and Moerner W E 2009 Nat. Photon. 3 654
9 Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and van Hulst N F 2010 Science 329 930
10 Ringler M, Schwemer A, Wunderlich M, Nichtl A, K\"urzinger K, Klar T A and Feldmann J 2008 Phys. Rev. Lett. 100 203002
11 Tian M, Zhao L, Yang Z, Chen H, Sun L, Wang J and Yan C 2009 Nano Lett. 9 3896
12 Vecchi G, Giannini V and Gòmez Rivas J 2009 Phys. Rev. Lett. 102 146807
13 Ren J, Gu Y, Zhao D, Zhang F, Zhang T and Gong Q 2017 Phys. Rev. Lett. 118 073604
14 Rousseaux B, Baranov D G, K\"all M, Shegai T and Johansson G 2018 Phys. Rev. B 98 045435
15 Peng P, Liu Y C, Xu D, Cao Q T, Lu G, Gong Q and Xiao Y F 2017 Phys. Rev. Lett. 119 233901
16 Zhang P, Gang S and Yu L I 2018 Photonics Res. 6 182
17 Haran G and Chuntonov L 2018 Chem. Rev. 118 5539
18 Wen J, Wang H, Wang W, Deng Z, Zhuang C, Zhang Y, Liu F, She J, Chen J, Chen H, Deng S and Xu N 2017 Nano Lett. 17 4689
19 Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667
20 Wen S S, Huang Y G, Wang X Y, Liu J, Li Y, Quan X E, Yang H, Peng J Z, Deng K and Zhao H P 2020 Opt. Express 28 6469
21 Ming T, Chen H, Jiang R, Li Q and Wang J 2012 J. Phys. Chem. Lett. 3 191
22 Cushing S K and Wu N N 2016 J. Phys. Chem. Lett. 7 666
23 Link S, Christopher P and Ingram D B 2011 Nat. Mater. 10 911
24 Hu M, Chen J, Li Z Y, Au L, Hartland G V, Li X, Marquez M and Xia Y Chem. Soc. Rev.35 1084
25 Huang X, Jain P K, El-Sayed I H and El-Sayed M A 2008 Laser. Med. Sci. 23 217
26 Jain P K, Huang X, El-Sayed I H and El-Sayed M A 2008 Acc. Chem. Res. 41 1578
27 Zhang X, Chen Y L, Liu R S and Tsai D P 2013 Rep. Prog. Phys. 76 046401
28 Camden J P, Dieringer J A, Zhao J and Van Duyne R P 2008 Accounts Chem. Res. 41 1653
29 Chen W, Zhang S, Deng Q and Xu H 2018 Nat. Commun. 9 801
30 Xu D, Wang X Y, Huang Y G, Ouyang S L, He H L and He H 2015 Chin. Phys. B 24 024205
31 Li M, Chen Y, Guo G C and Ren X F 2017 Acta Phys. Sin. 66 144202 (in Chinese)
32 Dung H T, Buhmann S Y, Knöll L, Welsch D G, Scheel S and K\"astel J 2003 Phys. Rev. A 68 043816
33 Cohen-Tannoudji C, Dupont-Roc J and Grynberg G1992 Atoms-Photons Interactions: Basic Processes and Applications (New York: John Wiley and Sons)
34 Milonni P W1994 The Quantum Vacuum: An Introduction to Quantum Electrodynamics (San Diego: Academic Press)
35 Agarwal G S1974 Quantum Statistical Theories of Spontaneous Emission and their Relation to Other Approaches (Berlin: Springer)
36 Buhmann S Y2012 Dispersion Forces I (Berlin: Springer)
37 Buhmann S Y2012 Dispersion Forces I\!I (Berlin: Springer)
38 Tian M, Huang Y G, Wen S S, Wang X Y, Yang H, Peng J Z and Zhao H P 2019 Phys. Rev. A 99 053844
39 Van Vlack C, Kristensen P T and Hughes S 2012 Phys. Rev. B 85 075303
40 Zhao Y J, Tian M, Wang X Y, Yang H, Zhao H and Huang Y G 2018 Opt. Express 26 1390
41 Zhao Y J, Tian M, Huang Y G, Wang X Y, Yang H and Mi X W 2018 Acta Phys. Sin. 67 193102 (in Chinese)
42 Tian M, Huang Y G, Wen S S, Yang H, Wang X Y, Peng J Z and Zhao H P 2019 Europhys. Lett. 126 13001
43 Zhou Z K, Liu J F, Bao Y J, Wu L, Png C E, Wang X H and Qiu C W 2019 Prog. Quantum Electron. 65 1
44 Zuloaga J, Prodan E and Nordlander P 2009 Nano Lett. 9 887
45 Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
46 Dhara A K and Ghosh S K 1987 Phys. Rev. A 35 442
47 Xiang H, Zhang X, Neuhauser D and Lu G 2014 J. Phys. Chem. Lett. 5 1163
48 Raza S, Bozhevolnyi S I, Wubs M and Mortensen N A 2015 J. Phys: Condens. Matter 27 183204
49 Toscano G, Straubel J, Kwiatkowski A, Rockstuhl C, Evers F, Xu H, Mortensen N A and Wubs M 2015 Nat. Commun. 6 7132
50 Raza S, Toscano G, Jauho A P, Wubs M and Mortensen N A 2011 Phys. Rev. B 84 121412
51 Kupresak M, Zheng X, Vandenbosch G A and Moshchalkov V V 2018 Adv. Theor. Simulat. 1 1800076
52 Dezfouli M K, Tserkezis C, Mortensen N A and Hughes S 2017 Optica 4 1503
53 Mortensen N A, Raza S, Wubs M, Sondergaard T and Bozhevolnyi S I 2014 Nat. Commun. 5 3809
54 Matthew R, Cobley C M, Jie Z, Weiyang L, Moran C H, Qiang Z, Dong Q and Younan X 2011 Chem. Rev. 111 3669
55 Sun Y G and Xia Y N 2002 Science 298 2176
56 Yang Y, Gu C and Li J 2019 Small 15 1804177
57 Liu R, Zhou Z K, Yu Y C, Zhang T, Wang H, Liu G, Wei Y, Chen H and Wang X H 2017 Phys. Rev. Lett. 118 237401
58 Zhu W, Esteban R, Borisov A G, Baumberg J J, Nordlander P, Lezec H J, Aizpurua J and Crozier K B 2016 Nat. Commun. 7 11495
59 Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508
60 Lohse S E and Murphy C J 2013 Chem. Mater. 25 1250
61 Nikoobakht B and El-Sayed M A 2003 Chem. Mater. 15 1957
62 Busbee B D, Obare S O and Murphy C J 2003 Adv. Mater. 15 414
63 Gole A and Murphy C J 2004 Chem. Mater. 16 3633
64 Huang X, Neretina S and El-Sayed M A 2009 Adv. Mater. 21 4880
65 Liao H and Hafner J H 2005 Chem. Mater. 17 4636
66 Von Maltzahn G, Park J H, Agrawal A, Bandaru N K, Das S K, Sailor M J and Bhatia S N 2009 Cancer Res. 69 3892
67 Dickerson E B, Dreaden E C, Huang X, El-Sayed I H, Chu H, Pushpanketh S, McDonald J F and El-Sayed M A 2008 Cancer Lett. 269 57
68 Agarwal A, Huang S W, O'donnell M, Day K C, Day M, Kotov N and Ashkenazi S 2007 J. Appl. Phys. 102 064701
69 Zijlstra P, Paulo P M R and Orrit M 2012 Nat. Nanotechnol. 7 379
70 Cao J, Sun T and Grattan K T 2014 Sensor. Actuat. B 195 332
71 Greg J N, Stella M M, Adam C C, Andreas D, Fredrik H, Adam W and Ashutosh C 2008 Anal. Chem. 80 984
72 Pines D 1956 Rev. Mod. Phys. 28 184
73 Stern E A and Ferrell R A 1960 Phys. Rev. 120 130
74 Halevi P 1995 Phys. Rev. B 51 7497
75 Cirac\`í C, Urzhumov Y and Smith D R 2013 Opt. Express 21 9397
76 Kyle A, Ilia M P, Robyn C, Xiang-Tian K, Philip D R, Shubin Z, David J M, Jon P C, Gregory V H and Masaru K 2020 Proc. Natl. Acad. Sci. USA 117 2288
77 Ertugrul C and Federico C 2009 Appl. Phys. Lett. 95 201101
78 Dorfm\"uller J, Vogelgesang R, Weitz R T, Rockstuhl C, Etrich C, Pertsch T, Lederer F and Kern K 2009 Nano Lett. 9 2372
79 Aizpurua J, Bryant G W, Richter L J, Garc\'ía de Abajo F J, Kelley B K and Mallouk T 2005 Phys. Rev. B 71 235420
80 Chang D E, Sørensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420
81 Yan W, Mortensen N A and Wubs M 2013 Phys. Rev. B 88 155414
82 Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J and Luo Y 2017 Nat. Commun. 8 15225
[1] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[2] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[3] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[4] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[5] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[6] Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility
Guanqiong Wang(王冠琼), Delong Xiao(肖德龙), Jiakun Dan(但家坤), Yang Zhang(张扬), Ning Ding(丁宁), Xianbin Huang(黄显宾), Xiaoguang Wang(王小光), Shunkai Sun(孙顺凯), Chuang Xue(薛创), Xiaojian Shu(束小建). Chin. Phys. B, 2019, 28(2): 025203.
[7] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[8] Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer problems
Juan-Mian Lei(雷娟棉) and Xue-Ying Peng(彭雪莹). Chin. Phys. B, 2016, 25(2): 020202.
[9] Hydrodynamics of passing-over motion during binary droplet collision in shear flow
Cheng-Yao Wang(王程遥), Cheng-Bin Zhang(张程宾), Xiang-Yong Huang(黄庠永), Xiang-Dong Liu(刘向东), Yong-Ping Chen(陈永平). Chin. Phys. B, 2016, 25(10): 108202.
[10] Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas
Ze-Yu Li(李泽宇), Xian-Qu Wang(王先驱), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2016, 25(1): 015203.
[11] Critical condition for the transformation from Taylor cone to cone-jet
Wei Cheng (魏承), Gang Tie-Qiang (冮铁强), Chen Li-Jie (陈立杰), Zhao Yang (赵阳). Chin. Phys. B, 2014, 23(6): 064702.
[12] Manipulation of plasmonic wavefront and light-matter interaction in metallic nanostructures:A brief review
Li Jia-Fang (李家方), Li Zhi-Yuan (李志远). Chin. Phys. B, 2014, 23(4): 047305.
[13] Surface-enhanced Raman scattering properties of highly ordered self-assemblies of gold nanorods with different aspect ratios
Shi Xue-Zhao(时雪钊), Shen Cheng-Min(申承民), Wang Deng-Ke(王登科), Li Chen(李晨), Tian Yuan(田园), Xu Zhi-Chuan(徐桎川), Wang Chun-Ming(王春明), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2011, 20(7): 076103.
[14] Investigation on the hydrodynamics of slab x-ray laser plasma by nonuiform line focused laser irradiation
Cheng Tao(程涛),Li Ying-Jun(李英骏),Meng Li-Min(孟立民),and Li Xi-Bo(李希波) . Chin. Phys. B, 2011, 20(2): 024206.
[15] Effects of bulk viscosity on hadron spectra and the Hanbury-Brown Twiss radius by causal viscous hydrodynamics
Li Jian-Wei(李建伟), Ma Yu-Gang(马余刚), and Ma Guo-Liang(马国亮). Chin. Phys. B, 2009, 18(11): 4786-4790.
No Suggested Reading articles found!