CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission |
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云)†, Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚)‡ |
College of Physics, Mechanical and Electrical Engineering Jishou University, Jishou 416000, China |
|
|
Abstract The spontaneous emission rate of a two-level quantum emitter (QE) near a gold nanorod is numerically investigated. Three different optical response models for the free-electron gas are adopted, including the classical Drude local response approximation, the nonlocal hydrodynamic model, and the generalized nonlocal optical response model. Nonlocal optical response leads to a blueshift and a reduction in the enhancement of the spontaneous emission rate. Within all the three models, the resonance frequency is largely determined by the aspect ratio (the ratio of the nanorod length to the radius) and increases sharply with decreasing aspect ratio. For nanorod with a fixed length, it is found that the larger the radius is, the higher the resonance frequency is, and the smaller the enhancement is. However, if the length of the nanorod increases, the peak frequency falls sharply, while the spontaneous emission enhancement grows rapidly. For nanorod with a fixed aspect ratio, the peak frequency decreases slowly with increasing nanorod size. Larger nanorod shows smaller nonlocal effect. At a certain frequency, there is an optimal size to maximize the enhancement of the spontaneous emission rate. Higher order modes are more affected by the nonlocal smearing of the induced charges, leading to larger blueshift and greater reduction in the enhancement. These results should be significant for investigating the spontaneous emission rate of a QE around a gold nanorod.
|
Received: 28 June 2020
Revised: 15 September 2020
Accepted manuscript online: 17 October 2020
|
PACS:
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
42.50.-p
|
(Quantum optics)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11964010, 11564013 and 11464014), the Natural Science Foundation of Hunan Province (Grant No. 2020JJ4495), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 18C0558), and the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant Nos. CX2018B706 and CX20190876). |
Corresponding Authors:
†Corresponding author. E-mail: wxyyun@163.com ‡Corresponding author. E-mail: huang122012@163.com
|
Cite this article:
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚) Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission 2021 Chin. Phys. B 30 027801
|
1 Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83 2 Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon. 2 496 3 Schuller J A, Barnard E S, Wenshan C, Young Chul J, White J S and Brongersma M L 2010 Nat. Mater. 9 193 4 Baranov D G, Wers\"all M, Cuadra J, Antosiewicz T J and Shegai T 2017 ACS Photon. 5 24 5 Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629 6 Chikkaraddy R, De Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O and Baumberg J J 2016 Nature 535 127 7 Muskens O L, Giannini V, Sanchez-Gil J A and Gòmez Rivas J 2007 Nano Lett. 7 2871 8 Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, M\"ullen K and Moerner W E 2009 Nat. Photon. 3 654 9 Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and van Hulst N F 2010 Science 329 930 10 Ringler M, Schwemer A, Wunderlich M, Nichtl A, K\"urzinger K, Klar T A and Feldmann J 2008 Phys. Rev. Lett. 100 203002 11 Tian M, Zhao L, Yang Z, Chen H, Sun L, Wang J and Yan C 2009 Nano Lett. 9 3896 12 Vecchi G, Giannini V and Gòmez Rivas J 2009 Phys. Rev. Lett. 102 146807 13 Ren J, Gu Y, Zhao D, Zhang F, Zhang T and Gong Q 2017 Phys. Rev. Lett. 118 073604 14 Rousseaux B, Baranov D G, K\"all M, Shegai T and Johansson G 2018 Phys. Rev. B 98 045435 15 Peng P, Liu Y C, Xu D, Cao Q T, Lu G, Gong Q and Xiao Y F 2017 Phys. Rev. Lett. 119 233901 16 Zhang P, Gang S and Yu L I 2018 Photonics Res. 6 182 17 Haran G and Chuntonov L 2018 Chem. Rev. 118 5539 18 Wen J, Wang H, Wang W, Deng Z, Zhuang C, Zhang Y, Liu F, She J, Chen J, Chen H, Deng S and Xu N 2017 Nano Lett. 17 4689 19 Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667 20 Wen S S, Huang Y G, Wang X Y, Liu J, Li Y, Quan X E, Yang H, Peng J Z, Deng K and Zhao H P 2020 Opt. Express 28 6469 21 Ming T, Chen H, Jiang R, Li Q and Wang J 2012 J. Phys. Chem. Lett. 3 191 22 Cushing S K and Wu N N 2016 J. Phys. Chem. Lett. 7 666 23 Link S, Christopher P and Ingram D B 2011 Nat. Mater. 10 911 24 Hu M, Chen J, Li Z Y, Au L, Hartland G V, Li X, Marquez M and Xia Y Chem. Soc. Rev.35 1084 25 Huang X, Jain P K, El-Sayed I H and El-Sayed M A 2008 Laser. Med. Sci. 23 217 26 Jain P K, Huang X, El-Sayed I H and El-Sayed M A 2008 Acc. Chem. Res. 41 1578 27 Zhang X, Chen Y L, Liu R S and Tsai D P 2013 Rep. Prog. Phys. 76 046401 28 Camden J P, Dieringer J A, Zhao J and Van Duyne R P 2008 Accounts Chem. Res. 41 1653 29 Chen W, Zhang S, Deng Q and Xu H 2018 Nat. Commun. 9 801 30 Xu D, Wang X Y, Huang Y G, Ouyang S L, He H L and He H 2015 Chin. Phys. B 24 024205 31 Li M, Chen Y, Guo G C and Ren X F 2017 Acta Phys. Sin. 66 144202 (in Chinese) 32 Dung H T, Buhmann S Y, Knöll L, Welsch D G, Scheel S and K\"astel J 2003 Phys. Rev. A 68 043816 33 Cohen-Tannoudji C, Dupont-Roc J and Grynberg G1992 Atoms-Photons Interactions: Basic Processes and Applications (New York: John Wiley and Sons) 34 Milonni P W1994 The Quantum Vacuum: An Introduction to Quantum Electrodynamics (San Diego: Academic Press) 35 Agarwal G S1974 Quantum Statistical Theories of Spontaneous Emission and their Relation to Other Approaches (Berlin: Springer) 36 Buhmann S Y2012 Dispersion Forces I (Berlin: Springer) 37 Buhmann S Y2012 Dispersion Forces I\!I (Berlin: Springer) 38 Tian M, Huang Y G, Wen S S, Wang X Y, Yang H, Peng J Z and Zhao H P 2019 Phys. Rev. A 99 053844 39 Van Vlack C, Kristensen P T and Hughes S 2012 Phys. Rev. B 85 075303 40 Zhao Y J, Tian M, Wang X Y, Yang H, Zhao H and Huang Y G 2018 Opt. Express 26 1390 41 Zhao Y J, Tian M, Huang Y G, Wang X Y, Yang H and Mi X W 2018 Acta Phys. Sin. 67 193102 (in Chinese) 42 Tian M, Huang Y G, Wen S S, Yang H, Wang X Y, Peng J Z and Zhao H P 2019 Europhys. Lett. 126 13001 43 Zhou Z K, Liu J F, Bao Y J, Wu L, Png C E, Wang X H and Qiu C W 2019 Prog. Quantum Electron. 65 1 44 Zuloaga J, Prodan E and Nordlander P 2009 Nano Lett. 9 887 45 Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997 46 Dhara A K and Ghosh S K 1987 Phys. Rev. A 35 442 47 Xiang H, Zhang X, Neuhauser D and Lu G 2014 J. Phys. Chem. Lett. 5 1163 48 Raza S, Bozhevolnyi S I, Wubs M and Mortensen N A 2015 J. Phys: Condens. Matter 27 183204 49 Toscano G, Straubel J, Kwiatkowski A, Rockstuhl C, Evers F, Xu H, Mortensen N A and Wubs M 2015 Nat. Commun. 6 7132 50 Raza S, Toscano G, Jauho A P, Wubs M and Mortensen N A 2011 Phys. Rev. B 84 121412 51 Kupresak M, Zheng X, Vandenbosch G A and Moshchalkov V V 2018 Adv. Theor. Simulat. 1 1800076 52 Dezfouli M K, Tserkezis C, Mortensen N A and Hughes S 2017 Optica 4 1503 53 Mortensen N A, Raza S, Wubs M, Sondergaard T and Bozhevolnyi S I 2014 Nat. Commun. 5 3809 54 Matthew R, Cobley C M, Jie Z, Weiyang L, Moran C H, Qiang Z, Dong Q and Younan X 2011 Chem. Rev. 111 3669 55 Sun Y G and Xia Y N 2002 Science 298 2176 56 Yang Y, Gu C and Li J 2019 Small 15 1804177 57 Liu R, Zhou Z K, Yu Y C, Zhang T, Wang H, Liu G, Wei Y, Chen H and Wang X H 2017 Phys. Rev. Lett. 118 237401 58 Zhu W, Esteban R, Borisov A G, Baumberg J J, Nordlander P, Lezec H J, Aizpurua J and Crozier K B 2016 Nat. Commun. 7 11495 59 Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508 60 Lohse S E and Murphy C J 2013 Chem. Mater. 25 1250 61 Nikoobakht B and El-Sayed M A 2003 Chem. Mater. 15 1957 62 Busbee B D, Obare S O and Murphy C J 2003 Adv. Mater. 15 414 63 Gole A and Murphy C J 2004 Chem. Mater. 16 3633 64 Huang X, Neretina S and El-Sayed M A 2009 Adv. Mater. 21 4880 65 Liao H and Hafner J H 2005 Chem. Mater. 17 4636 66 Von Maltzahn G, Park J H, Agrawal A, Bandaru N K, Das S K, Sailor M J and Bhatia S N 2009 Cancer Res. 69 3892 67 Dickerson E B, Dreaden E C, Huang X, El-Sayed I H, Chu H, Pushpanketh S, McDonald J F and El-Sayed M A 2008 Cancer Lett. 269 57 68 Agarwal A, Huang S W, O'donnell M, Day K C, Day M, Kotov N and Ashkenazi S 2007 J. Appl. Phys. 102 064701 69 Zijlstra P, Paulo P M R and Orrit M 2012 Nat. Nanotechnol. 7 379 70 Cao J, Sun T and Grattan K T 2014 Sensor. Actuat. B 195 332 71 Greg J N, Stella M M, Adam C C, Andreas D, Fredrik H, Adam W and Ashutosh C 2008 Anal. Chem. 80 984 72 Pines D 1956 Rev. Mod. Phys. 28 184 73 Stern E A and Ferrell R A 1960 Phys. Rev. 120 130 74 Halevi P 1995 Phys. Rev. B 51 7497 75 Cirac\`í C, Urzhumov Y and Smith D R 2013 Opt. Express 21 9397 76 Kyle A, Ilia M P, Robyn C, Xiang-Tian K, Philip D R, Shubin Z, David J M, Jon P C, Gregory V H and Masaru K 2020 Proc. Natl. Acad. Sci. USA 117 2288 77 Ertugrul C and Federico C 2009 Appl. Phys. Lett. 95 201101 78 Dorfm\"uller J, Vogelgesang R, Weitz R T, Rockstuhl C, Etrich C, Pertsch T, Lederer F and Kern K 2009 Nano Lett. 9 2372 79 Aizpurua J, Bryant G W, Richter L J, Garc\'ía de Abajo F J, Kelley B K and Mallouk T 2005 Phys. Rev. B 71 235420 80 Chang D E, Sørensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420 81 Yan W, Mortensen N A and Wubs M 2013 Phys. Rev. B 88 155414 82 Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J and Luo Y 2017 Nat. Commun. 8 15225 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|