CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles |
Chun-Ying Pu(濮春英)1, Rong-Mei Yu(于荣梅)1, Ting Wang(王婷)2, Zhen-Yan Xüe(薛振彦)1, Yong-Sheng Zhu(朱永胜)1, and Da-Wei Zhou(周大伟)1,† |
1 College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China; 2 Department of Mathematics and Statistics, Nanyang Normal University, Nanyang 473061, China |
|
|
Abstract Using the particle swarm optimization algorithm on structural search methods, we focus our crystal structures search on boron-rich alkali metal compounds of MB12 (M= Be, Mg, Ca, Sr) with simulation cell sizes of 1-2 formula units (f.u.) at 0 GPa. The structure, electronic, and mechanical properties of MB12 are obtained from the density functional theory using the plane-wave pseudopotential method within the generalized gradient approximations. The formation enthalpies of MB12 regarding to solid metal M and solid alpha-boron suggested the predicted structures can be synthesized except for BeB12. The calculated band structures show MB12 (M= Be, Mg, Ca, Sr) are all indirect semiconductors. All the calculated elastic constants of MB12 satisfy the the mechanical stable conditions. The mechanical parameters (i.e., bulk modulus, shear modulus, and Young's modulus) are derived using the Voigt-Reuss-Hill method. The G/B ratios indicated that the MB12 should exhibit brittle behavior. In addition, the hardness, Debye temperature, universal anisotropic index, and the percentage of anisotropy in compression and shear are also discussed in detail. We hope our results can inspire further experimental study on these boron-rich alkali-metal compounds.
|
Received: 30 July 2020
Revised: 27 August 2020
Accepted manuscript online: 09 September 2020
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
81.40.Jj
|
(Elasticity and anelasticity, stress-strain relations)
|
|
62.20.Dy
|
|
|
Fund: Projected supported by the National Natural Science Foundation of China (Grant Nos. U1904179, U1904178, and 51501093), the Key Science Fund of Educational Department of Henan Province, China (Grant Nos. 19A140013 and 20B140010), and the Science Technology Innovation Talents Fund in Universities of Henan Province, China (Grant No. 19HASTIT019). |
Corresponding Authors:
†Corresponding author. E-mail: zhoudawei@nynu.edu.cn
|
Cite this article:
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟) Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles 2021 Chin. Phys. B 30 017102
|
1 Guo J, Fu H, Zou G, Liu B and Peng Q 2015 J. Alloys Compd. 632 68 2 Jiang X and Zhao J 2015 RSC Adv. 5 48012 3 Hermann A, Mcsorley A, Ashcroft N W and Hoffmann R 2012 J. Am. Chem. Soc. 134 18606 4 Wang M, Li Y, Tian C, Ma Y and Zou G2008 Appl. Phys. Lett. 93 294 5 Wang M, Li Y W, Cui T, Ma Y M and Zou G T 2008 Appl. Phys. Lett. 93 101905 6 Liang Y, Gou Y, Xun Y, Zheng Z and Zhang W 2013 Chem. Phys. Lett. 580 48 7 Gou H, Li Z, Wang L M, Lian J and Wang Y 2012 Aip Adv. 2 012171 8 Gou H, Li Z, Wang L M, Lian J and Wang Y2012 Aip Adv. 2 231 9 Liang Y, Xun Y and Zhang W 2011 Phys. Rev. B 83 220102 10 Matkovich V I, Economy J, Giese R F and Barrett R 2010 Acta Crystallogr. 19 1056 11 Placa S L, Binder I and Post B 1961 J. Inorg. Nucl. Chem. 18 113 12 Akopov G, Sobell Z C, Yeung M T and Kaner R B 2016 Inorg. Chem. 55 12419 13 Schmechel R and Werheit H 1999 J. Phys. Condens. Matter 11 6803 14 Werheit H, Filipov V, Shirai K, Dekura H, Shitsevalova N, Schwarz U and Armbrüster M 2011 J. Phys.: Condens. Matter 23 065403 15 Werheit and Helmut2009 J. Phys. Conf. 176 012019 16 Werheit H 2007 J. Phys. Condens. Matter 19 186207 17 Matthias B T, Geballe T H, Andres K, Corenzwit E, Hull G W and Maita J P 1968 Science 159 530 18 Mar R W and Stout N D 1972 J. Chem. Phys. 57 5342 19 Akopov G, Yeung M T, Sobell Z C, Turner C L, Lin C W and Kaner R B 2016 Chem. Mater. 28 6605 20 Ma T, Li H, Zheng X, Wang S, Wang X, Zhao H, Han S, Liu J, Zhang R, Zhu P, Long Y, Cheng J, Ma Y, Zhao Y, Jin C and Yu X 2017 Adv. Mater. 29 1604003 21 Slater J C 1964 J. Chem. Phys. 41 3199 22 Cannon J F and Farnsworth P B 1983 Journal of the Less Common Metals 92 359 23 Cannon J F, Cannon D M and Hall H T 1977 Journal of the Less Common Metals 56 83 24 Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 25 Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301 26 Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 27 Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H and Xing D 2018 Sci. Bull. 63 817 28 Sun Y, Lv J, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001 29 Cui W W, Li Y W 2019 Chin. Phys. B 28 107104 30 Xu M, Huang C, Li Y, Liu S, Zhong X, Jena P, Kan E and Wang Y 2020 Phys. Rev. Lett. 124 067602 31 Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990 32 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 33 Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 34 Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 35 Blöchl P E 1994 Phys. Rev. B 50 17953 36 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 37 Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 38 Hill R1952 Proc. Phys. Soc. London 65 350 39 Hill R 1952 Proc. Phys. Soc. A 65 349 40 Hanies J, Léger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1 41 Watt J P and Peselnick L 1980 J. Appl. Phys. 51 1525 42 Watt J P 1980 J. Appl. Phys. 50 6290 43 Nye J F1985 Physical properties of crystals (Oxford: Oxford University Press) 44 Chung D H and Buessem W R1968 Plenum Press, New York 2 217 45 Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010 46 Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|