Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108103    DOI: 10.1088/1674-1056/ab9c08
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical studies on alloying of germanene supported on Al (111) substrate

Qian-Xing Chen(陈前行)1, Hao Yang(杨浩)1, and Gang Chen(陈刚)1,2,
1 Laboratory of Advanced Materials Physics and Nanodevices, School of Physics and Technology, University of Jinan, Jinan 250022, China
2 School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  

Using density functional theory, we study the alloying of the buckled hexagonal germanene superlattice supported on Al (111)-(3 × 3), the sheet composed of triangular, rhombic, and pentagonal motifs on Al (111)-(3 × 3), and the buckled geometry on Al (111)-($ \sqrt{7}\times \sqrt{7} $ )(19°), which are denoted, respectively, by BHS, TRP, and SRT7, to facilitate the discussion in this paper. They could be alloyed in the low doping concentration range. The stable configurations BHS, TRP, and SRT7 of the pure and alloyed germanenes supported on both Al (111) and its Al2Ge surface alloy, except the SRT7 pure germanene on Al2Ge, could re-produce the experimental scanning tunneling microscopy images. The relatively stable Al–Ge alloy species are the Al3Ge5 BHS-2T, Al3Ge5 TRP-2T, and Al3Ge3 SRT7-1T on Al (111) while they are the Al4Ge4 BHS-1T, Al3Ge5 TRP-2T, and Al27Ge27 SRT7-(3 × 3)-9T on Al2Ge (the n in the nT means that there are n Ge atoms per unit which sit at the top sites and protrude upward). In addition, the Al3Ge5 BHS-2T and Al4Ge4 BHS-1T are the most stable alloy sheets on Al (111) and Al2Ge, respectively. Comparing with the experimental studies, there exists no structural transition among these alloyed configurations, which suggests that the experimental conditions play a crucial role in selectively growing the pure or the alloyed germanene sheets, which may also help grow the one-atomic thick honeycomb structure on idea Al (111).

Keywords:  first-principles calculation      alloyed two-dimensional material      substrate for two-dimensional material growth      two-dimensional nanostructure  
Received:  04 April 2020      Revised:  30 May 2020      Accepted manuscript online:  12 June 2020
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  81.05.Rm (Porous materials; granular materials)  
  81.05.ue (Graphene)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Corresponding Authors:  Corresponding author. E-mail: phdgchen@163.com   
About author: 
†Corresponding author. E-mail: phdgchen@163.com
* Project supported by the National Natural Science Foundation of China (Grant No. 11674129).

Cite this article: 

Qian-Xing Chen(陈前行), Hao Yang(杨浩), and Gang Chen(陈刚)† Theoretical studies on alloying of germanene supported on Al (111) substrate 2020 Chin. Phys. B 29 108103

Fig. 1.  

Schematic illustrations of structural models of germanenes grown on Al (111) along with the configuration of the Al (111) itself. Only two top layers of substrate are shown. Black rhombuses are periodic units used in calculations. Grey, blue, and green spheres represent Al atoms in substrate, Ge atoms in basal plane of the 2D sheet, and Ge atoms protruded upward which can be seen in STM image of the 2D sheet, respectively.

Fig. 2.  

Plots of relative energy release $ \Delta {E}_{{\rm{er}}}^{{\rm{alloy}}} $ , step wise formation energy Eswf, and the second-order finite difference of the total energy Δ2 versus doping concentration, with solid green down triangle, empty blue square, empty red circle, and solid black square denoting the alloying of BHS-2T, TRP-1T, SRT7-1T, and SRT19-3T germanenes supported on Al (111), respectively.

Fig. 3.  

Alloy configurations with positive formation energy Eswf corresponding to (a) SRT19-3T, (b) SRT7-1T, (c) TRP-1T, and (d) BHS-2T germananes supported on Al (111). The Al:Ge ratio of numbers of Al and Ge atoms in unit is also provided. The black rhombuses are the periodic units used in calculation. Grey, blue, green, and red sphere denote Al atom in substrate, Ge atom in the basal plane of the 2D sheet, Ge atom protruded upward which can be seen in STM image of the 2D sheet, and Al atoms doped in basal plane of the 2D sheet, respectively.

Fig. 4.  

STM images simulated at +1.3-V bias of pure germanenes TRP-1T, BHS-2T, SRT19-3T, and SRT7-1T and the corresponding stable alloy species Al3Ge5 TRP-2T, Al3Ge5 BHS-2T, Al9Ge9 SRT19-1T, and Al3Ge3 SRT7-1T supported on Al (111), with yellow rhombuses representing periodic units used in calculation.

Fig. 5.  

Schematic illustrations of structural models of germanenes grown on Al2Ge surface alloy along with the configuration of Al2Ge itself. Only two top layers of substrate are shown. Black rhombuses are periodic units used in calculation. Grey, blue, green, and yellow spheres are Al atom in substrate, Ge atom in basal plane of the 2D sheet, Ge atom protruded upward which can be seen in STM image of the 2D sheet, and Ge atoms doped in Al2Ge surface alloy, respectively.

Fig. 6.  

Plots of relative energy release $ \Delta {E}_{{\rm{er}}}^{{\rm{alloy}}} $ , step wise formation energy Eswf, and second order finite difference of total energy Δ2 versus doping concentration, with empty yellow up triangle, solid green down triangle, empty blue square, and empty red circle denoting alloying of the BHS-1H, BHS-2T, TRP-1T, and SRT7-1T germanenes supported on Al2Ge, respectively.

Fig. 7.  

Alloy configurations with positive formation energy Eswf corresponding to (a) TRP-1T, (b) SRT7-(3×3)-9H, (c) BHS-2T, and (d) BHS-1H germananes supported on Al2Ge. The Al:Ge ratio between the numbers of Al and Ge atoms in the unit is also provided. Black rhombuses represent periodic units used in calculation. Grey, blue, green, yellow, and red sphere denote Al atom in substrate, Ge atom in basal plane of the 2D sheet, Ge atom protruded upward which can be seen in STM image of the 2D sheet, Ge atoms doped in the Al2Ge surface alloy, and Al atoms doped in basal plane of the 2D sheet, respectively.

Fig. 8.  

STM images simulating +1.3-V bias for Ge8 TRP-1T and its alloy sheet Al3Ge5 TRP-2T, Ge8 BHS-2T, and Al4Ge4 BHS-1T, Ge8 BHS-1H and Al2Ge6 BHS-1H, and Ge54 SRT7-(3 × 3)-9H, and Al27Ge27 SRT7-(3 × 3)-9T supported on Al2Ge. In image of Al27Ge27 SRT7-(3 × 3)-9T, red rhombus corresponds to the smallest repeated unit of the bright-spot pattern. The yellow rhombuses denote periodic units used in calculation.

Fig. 9.  

Isosurfaces at 0.015 e/Å3 for charge accumulation (cyan) in left panel and the charge depletion (orange) in right panel. Panels (a) and (b) are for pure germanane structure HL and stable Al3Ge5 BHS-2T supported on Al (111). Panels (c) and (d) are for pure germanene structure BHS-1H and the stable Al4Ge4 BHS-1T supported on Al2Ge surface alloy.

Structure Al (111) Al2Ge Structure Al (111) Al2Ge
Ge6 HL 114 101 Ge8 BHS-2T 92 85
Ge27 KL 107 92 Al3Ge5 TRP-2T 121 107
Ge8 BHS-1H 83 81 Al3Ge5 BHS-2T 104
Ge8 TRP-1T 99 9 Al4Ge4 BHS-1T − 101
Ge6 SRT7-1T 9 Al3Ge3 SRT7-1T 113
Ge54 SRT7-(3 × 3)-9H 78 Al27Ge27 SRT7-(3 × 3)-9T 104
Table 1.  

Calculated adhesive energy (in units of meV/Å2) between 2D sheet and substrate with Gen and AlmGen corresponding to unit of pure and alloyed 2D sheet, respectively.

Fig. A1.  

Doping configurations of a single Al atom in 2D germanene models supported on Al (111) corresponding to (a) HL, (b) KL, (c) TRP-1T, (d) BHS-2T, (e) BHS-1H, (f) SRT19-3T, and (g) SRT7-1T structures. Grey, blue, green, and red spheres denote Al atoms in substrate, Ge atoms in basal plane of the 2D sheet, Ge atoms protruded upward which can be seen in STM image of the 2D sheet, and Al atoms doped in basal plane of the 2D sheet, respectively.

Fig. A2.  

Ground state configurations of two Al atoms doped in 2D germanenes supported on Al (111) corresponding to (a) HL, (b) KL, (c) TRP-1T, (d) BHS-2T, (e) SRT19-3T, and (f) SRT7-1T structures. Grey, blue, green, and red spheres denote Al atoms in substrate, Ge atoms in basal plane of the 2D sheet, Ge atoms protruded upward which can be seen in STM image of the 2D sheet, and Al atoms doped in basal plane of the 2D sheet, respectively.

Fig. A3.  

Alloy configurations with negative formation energy Eswf corresponding to (a) SRT19-3T, (b) SRT7-1T, (c) TRP-1T, and (d) BHS-2T germananes supported on Al (111). Number ratio of Al and Ge atoms in unit Al:Ge is also provided. Black rhombuses represent periodic units used in calculations, and grey, blue, purple, green, and red spheres denote Al atoms in substrate, Ge atoms in basal plane of the 2D sheet, Al atoms protruded upward in the 2D sheet, protruded Ge atoms in the 2D sheet, and Al atoms doped in the basal plane of the 2D sheet, respectively.

Fig. A4.  

Alloy configurations with negative formation energy Eswf corresponding to (a) SRT7-(3 × 3)-9H, (b) TRP-1T, and (c) BHS-2T germananes supported on Al2Ge. Number ratio of Al and Ge atoms in unit Al:Ge is also provided. Black rhombuses represent the periodic units used in the calculations. The grey, blue, purple, green, and red spheres denote Al atoms in Al2Ge substrate, Ge atoms in basal plane of the 2D sheet, Al atoms protruded upward in the 2D sheet, protruded Ge atoms in the 2D sheet, and Al atoms doped in the basal plane of the 2D sheet, respectively.

Fig. A5.  

Isosurfaces at 0.015 e/Å3 for charge accumulation colored in cyan in the left panel and the charge depletion colored in orange in the right one indicating (a) HL, (b) KL, (c) BHS-1H, (d) BHS-2T, (e) TRP-1T, (f) SRT19-3T, and (g) SRT7-1T pure germanane structures supported on Al (111), respectively relatively stable alloy species (h) Al3Ge5 BHS-2T, (i) Al3Ge5 TRP-2T, (j) Al3Ge3 SRT7-1T, (k) SRT7-1T, and (k) Al9Ge9 SRT19-1T structures, respectively.

Fig. A6.  

Calculated PDOSs of Ge atom in Al9Ge45 SRT7-(3 × 3) sheet. The green line is for protruded Ge atom that can be seen in the simulated STM image, and grey line is for protruded Ge atom that could not be seen in the simulated STM image.

Fig. A7.  

Isosurfaces at 0.015 e/Å3 for charge accumulation colored in cyan in the left panel and the charge depletion colored in orange in the right one indicating (a) HL, (b) KL, (c) BHS-1H, (d) BHS-2T, (e) TRP-1T, and (f) SRT7-(3 × 3)-9H pure germanane structures supported on Al2Ge, respectively relatively stable alloy species (g) Al4Ge4 BHS-1T, (h) Al3Ge5 TRP-2T, and (i) Al27Ge27 SRT7-(3 × 3)-9T structures, respectively.

[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666 DOI: 10.1126/science.1102896
[2]
Geim A K, Novoselov K S 2007 Nat. Mater. 6 183 DOI: 10.1038/nmat1849
[3]
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706 DOI: 10.1038/nature07719
[4]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197 DOI: 10.1038/nature04233
[5]
Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201 DOI: 10.1038/nature04235
[6]
Wei Y P, Jia T, Chen G 2017 Chin. Phys. B 26 028103 DOI: 10.1088/1674-1056/26/2/028103
[7]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992 DOI: 10.1002/adma.201304138
[8]
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033 DOI: 10.1038/natrevmats.2017.33
[9]
Liu J, Ma Y Q, Dai Y W, Chen Y, Li Y, Tang Y N, Dai X Q 2019 Chin. Phys. B 28 107101 DOI: 10.1088/1674-1056/ab3b53
[10]
Ren D, Tan X, Zhang T, Zhang Y 2019 Chin. Phys. B 28 086104 DOI: 10.1088/1674-1056/28/8/086104
[11]
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372 DOI: 10.1038/nnano.2014.35
[12]
Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820 DOI: 10.1002/adma.v26.28
[13]
Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002 DOI: 10.1088/1367-2630/16/9/095002
[14]
Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510 DOI: 10.1021/acs.nanolett.5b00085
[15]
Fukaya Y, Matsuda I, Feng B, Mochizuki I, Hyodo T, Shamoto S I 2016 2D Mater. 3 035019 DOI: 10.1088/2053-1583/3/3/035019
[16]
Stephan R, Derivaz M, Hanf M C, Dentel D, Massara N, Mehdaoui A, Sonnet P, Pirri C 2017 J. Phys. Chem. Lett. 8 4587 DOI: 10.1021/acs.jpclett.7b02137
[17]
Wang W, Uhrberg R I G 2017 Beilstein J. Nanotechnol. 8 1946 DOI: 10.3762/bjnano.8.195
[18]
Endo S, Kubo O, Nakashima N, Iwaguma S, Yamamoto R, Kamakura Y, Tabata H, Katayama M 2018 Appl. Phys. Express 11 015502 DOI: 10.7567/APEX.11.015502
[19]
Stephan R, Hanf M C, Derivaz M, Dentel D, Asensio M C, Avila J, Mehdaoui A, Sonnet P, Pirri C 2016 J. Phys. Chem. C 120 1580 DOI: 10.1021/acs.jpcc.5b10307
[20]
Martinez E A, Fuhr J D, Grizzi O, Sanchez E A, Cantero E D 2019 J. Phys. Chem. C 123 12910 http://dx.doi.org/
[21]
Lei B, Zhang Y Y, Du S X 2019 Chin. Phys. B 28 046803 DOI: 10.1088/1674-1056/28/4/046803
[22]
He X, Li J B 2019 Chin. Phys. B 28 037301 DOI: 10.1088/1674-1056/28/3/037301
[23]
Su Y, Fan X 2017 Chin. Phys. B 26 108101 DOI: 10.1088/1674-1056/26/10/108101
[24]
Wang H B, Su Y, Chen G 2014 Chin. Phys. B 23 018103 DOI: 10.1088/1674-1056/23/1/018103
[25]
Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169 DOI: 10.1103/PhysRevB.54.11169
[26]
Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 DOI: 10.1103/PhysRevLett.77.3865
[27]
Kresse G, Joubert D 1999 Phys. Rev. B 59 1758 DOI: 10.1103/PhysRevB.59.1758
[28]
Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188 DOI: 10.1103/PhysRevB.13.5188
[29]
Kittel C 1996 Introduction to Solid State Physics 7 New York John Wiley & Sons
[30]
Garcia J C, Lima D B, Assali L V C, Justo J F 2011 J. Phys. Chem. C 115 13242 DOI: 10.1021/jp203657w
[31]
Li S J, Su Y, Chen G 2015 Chem. Phys. Lett. 638 187 DOI: 10.1016/j.cplett.2015.08.044
[32]
Arnold C C, Xu C, Burton G R, Neumark D M 1995 Spectroscopy 102 6982 http://dx.doi.org/
[33]
Lide D R 2001 CRC Handbook of Chemistry and Physics 84 New York CRC Press
[34]
Shi S, Liu Y, Zhang C, Deng B, Jiang G 2015 Comput. Theor. Chem. 1054 8 DOI: 10.1016/j.comptc.2014.12.004
[35]
Fang J, Zhao P, Chen G 2018 J. Phys. Chem. C 122 18669 DOI: 10.1021/acs.jpcc.8b03534
[36]
Bader R F W 1990 Atoms in Molecules: A Quantum Theory Oxford Oxford University Press
[37]
Tang W, Sanville E, Henkelman G 2009 J. Phys.: Condens. Matter 21 084204 DOI: 10.1088/0953-8984/21/8/084204
[38]
Tersoff J, Hamann D R 1983 Phys. Rev. Lett. 50 1998 DOI: 10.1103/PhysRevLett.50.1998
[39]
Zhang C, Chen G, Wang K, Yang H, Su T, Chan C T, Loy M M T, Xiao X 2005 Phys. Rev. Lett. 94 176104 DOI: 10.1103/PhysRevLett.94.176104
[40]
Chen G, Xiao X, Kawazoe Y, Gong X G, Chan C T 2009 Phys. Rev. B 79 115301 DOI: 10.1103/PhysRevB.79.115301
[41]
Muller E, Sutter E, Zahl P, Ciobanu C V, Sutter P 2007 Appl. Phys. Lett. 90 151917 DOI: 10.1063/1.2722197
[42]
Zheng M M, Li S J, Su Y, Chen G, Kawazoe Y 2013 J. Phys. Chem. C 117 25077 DOI: 10.1021/jp4072839
[43]
Zheng M M, Ren T Q, Chen G, Kawazoe Y 2014 J. Phys. Chem. C 118 7442 DOI: 10.1021/jp500178y
[44]
Oughaddou H, Aufray B, Gay J M 1999 Surf. Review. Lett. 6 929 DOI: 10.1142/S0218625X99001001
[45]
Oughaddou H, Sawaya S, Goniakowski J, Aufray B, Le Lay G, Gay J, Tréglia G, Bibérian J P, Barrett N, Guillot C, Mayne A, Dujardin G 2000 Phys. Rev. B 62 16653 DOI: 10.1103/PhysRevB.62.16653
[46]
Liu Y, Zhuang J, Liu C, Wang J, Xu X, Li Z, Zhong J, Du Y 2017 J. Phys. Chem. C 121 16754 DOI: 10.1021/acs.jpcc.7b02017
[47]
Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106 DOI: 10.1103/PhysRevB.78.134106
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!