1Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Nanodiamonds have outstanding mechanical properties, chemical inertness, and biocompatibility, which give them potential in various applications. Current methods for preparing nanodiamonds often lead to products with impurities and uneven morphologies. We report a two-step high-pressure high-temperature (HPHT) method to synthesize nanodiamonds using naphthalene as the precursor without metal catalysts. The grain size of the diamonds decreases with increasing carbonization time (at constant pressure and temperature of 11.5 GPa and 700 °C, respectively). This is discussed in terms of the different crystallinities of the carbon intermediates. The probability of secondary anvil cracking during the HPHT process is also reduced. These results indicate that the two-step method is efficient for synthesizing nanodiamonds, and that it is applicable to other organic precursors.
* Project supported by the National Key R&D Program of China (Grant No. 2018YFB0406500), the National Natural Science Foundation of China (Grant Nos. U1804155, U1604263, and 11804307), and the China Postdoctoral Science Foundation (Grant Nos. 2018M630830 and 2019T120631).
Cite this article:
Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§ Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene 2020 Chin. Phys. B 29 108102
Scheme 1.
Schematic of the synthesis of nanodiamonds via the two-step HPHT method. 1. cylindrical sample of the precursor naphthalene; 2. graphite container; 3. ZrO2 sleeve; 4. octahedron pressure medium of MgO.
Fig. 1.
(a) XRD patterns and (b) Raman spectra of the naphthalene precursor and samples NX (X = 1–4) prepared using different carbonization time at 11.5 GPa and 1700 °C.
Step 1: Carbonization at 11.5 GPa and 700 °C
Step 2: Diamondation at 11.5 GPa and 1700 °C
Timea/min
Morphology
Timeb/s
Average size/nm
N1
35
/
300
457
N2
90
/
300
204
N3
135
/
300
62
N4
180
/
300
127
N5
35
amorphous
/
/
N6
90
chipped
/
/
N7
135
layered
/
/
N8
180
block
/
/
Table 1.
The experimental conditions and results for samples NX (X = 1–8).
Fig. 2.
(a)–(d) Grain size distributions of samples NX (X = 1–4) prepared using different carbonization time. The red curves show fitting of the lognormal distribution function. Inset shows the corresponding SEM images.
Fig. 3.
Average grain size of samples NX (X = 1–4) as a function of carbonization time.
Fig. 4.
(a) TEM image of sample N3. Inset shows HRTEM image of a single diamond particle from the white rectangle area marked in (a). (b) Selected area electron diffraction pattern of sample N3.
Fig. 5.
(a) XRD patterns, (b) Raman spectra, and (c)–(f) SEM images of samples NX (X = 5–8) obtained using different carbonization time at 11.5 GPa and 700 °C.
Fig. 6.
Raman spectra of diamond obtained employing (a) anthracene and (b) acridine as precursors in the two-step HPHT method.
[1]
Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250 DOI: 10.1038/nature13381
[2]
Wen B, Xu B, Wang Y B, Gao G Y, Zhou X F, Zhao Z S, Tian Y J 2019 npj. Comput. Mater. 5 117 DOI: 10.1038/s41524-019-0256-2
[3]
Hu W T, Wen B, Huang Q, Xiao J W, Yu D L, Wang Y B, Zhao Z S, He J L, Liu Z Y, Xu B, Tian Y J 2017 Sci. Chin. Mater. 60 178 DOI: 10.1007/s40843-016-5161-2
[4]
Su L X, Lou Q, Zang J H, Shan C X, Gao Y F 2017 Appl. Phys. Express 10 025102 DOI: 10.7567/APEX.10.025102
[5]
Mochalin V N, Shenderova O, Ho D, Gogotsi Y 2012 Nat. Nanotechnol. 7 11 DOI: 10.1038/nnano.2011.209
Huang H J, Pierstorff E, Osawa E, Ho D 2007 Nano Lett. 7 3305 DOI: 10.1021/nl071521o
[13]
Zhang X Q, Chen M, Lam R, Xu X Y, Osawa E, Ho D 2009 ACS Nano 3 2609 DOI: 10.1021/nn900865g
[14]
Qin S R, Zhao Q, Cheng Z G, Su L X, Shan C X 2018 Acta Phys. Sin. 67 166801 in Chinese DOI: 10.7498/aps.67.20180862
[15]
Moore L, Chow E K H, Osawa E, Bishop J M, Ho D 2013 Adv. Mater. 25 3532 DOI: 10.1002/adma.201300343
[16]
Chang Y R, Lee H Y, Chen K, Chang C C, Tsai D S, Fu C C, Lim T S, Tzeng Y K, Fang C Y, Han C C, Chang H C, Fann W 2008 Nat. Nanotechnol. 3 284 DOI: 10.1038/nnano.2008.99
[17]
Zhang X Q, Lam R, Xu X Y, Chow E K, Kim H J, Ho D 2011 Adv. Mater. 23 4770 DOI: 10.1002/adma.201102263
[18]
Zhang K K, Zhao Q, Qin S R, Fu Y, Liu R Z, Zhi J F, Shan C X 2019 J. Colloid Interf. Sci. 537 316 DOI: 10.1016/j.jcis.2018.11.028
Khan M B, Khan Z H 2018 Nanodiamonds: synthesis and applications Singapore Springer Nature 1
[21]
Dong J J, Yao Z, Yao M G, Li R, Hu K, Zhu L Y, Wang Y, Sun H H, Sundqvist B, Yang K, Liu B B 2020 Phys. Rev. Lett. 124 065701 DOI: 10.1103/PhysRevLett.124.065701
[22]
Osawa E 2005 Disintegration and purification of crude aggregates of detonation nanodiamond: A few remarks on nano methodology Netherlands Springer 231
[23]
Pichot V, Comet M, Fousson E, Baras C, Senger A, Normand F L, Spitzer D 2008 Diam. Relat. Mater. 17 13 DOI: 10.1016/j.diamond.2007.09.011
[24]
Han F, Li S S, Jia X F, Chen W Q, Su T C, Hu M H, Yu K P, Wang J K, Wu Y M, Ma H A, Jia X P 2019 Chin. Phys. B 28 028103 DOI: 10.1088/1674-1056/28/2/028103
Sokol G, Tomilenko A A, Bul’bak T A, Sokol L A, Persikov E S, Bukhtiyarov P G, Palyanov Y N 2018 High Press. Res. 38 468 DOI: 10.1080/08957959.2018.1517342
[32]
Walker D, Carpenter M A, Hitch C M 1990 Am. Miner. 75 1020
[33]
Leinenweber K D, Tyburczy J A, Sharp T G, Soignard E, Diedrich T, Petuskey W B, Wang Y, Mosenfelder J L 2012 Am. Miner. 97 353 DOI: 10.2138/am.2012.3844
[34]
Angadi V J, Anupama A V, Kumar R, Choudhary H K, Matteppanavar S, Somashekarappa H M, Rudraswamy B, Sahoo B 2017 Mater. Chem. Phys. 199 313 DOI: 10.1016/j.matchemphys.2017.07.021
Yang X G, Yao M G, Wu X Y, Liu S J, Chen S L, Yang K, Liu R, Cui T, Sundqvist B, Liu B B 2017 Phys. Rev. Lett. 118 245701 DOI: 10.1103/PhysRevLett.118.245701
[42]
Chanyshev A D, Litasov K D, Furukawa Y, Kokh K A, Shatskiy A F 2017 Sci. Rep. 7 7889 DOI: 10.1038/s41598-017-08529-2
[43]
Spanu L, Donadio D, Hohl D, Schwegler E, Galli G 2011 Proc. Natl. Acad. Sci. 108 6843 DOI: 10.1073/pnas.1014804108
[44]
Fang S, Ma H A, Guo L S, Chen L C, Wang Y, Ding L Y, Cai Z H, Wang J, Jia X P 2019 Chin. Phys. B 28 098101 DOI: 10.1088/1674-1056/ab3445
[45]
Yang X G, Lv C F, Yao Z, Yao M G, Qin J X, Li X, Shi L, Du M R, Liu B B, Shan C X 2020 Carbon 159 266 DOI: 10.1016/j.carbon.2019.12.057
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.