Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108102    DOI: 10.1088/1674-1056/abad1c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene

Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§
1 Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  

Nanodiamonds have outstanding mechanical properties, chemical inertness, and biocompatibility, which give them potential in various applications. Current methods for preparing nanodiamonds often lead to products with impurities and uneven morphologies. We report a two-step high-pressure high-temperature (HPHT) method to synthesize nanodiamonds using naphthalene as the precursor without metal catalysts. The grain size of the diamonds decreases with increasing carbonization time (at constant pressure and temperature of 11.5 GPa and 700 °C, respectively). This is discussed in terms of the different crystallinities of the carbon intermediates. The probability of secondary anvil cracking during the HPHT process is also reduced. These results indicate that the two-step method is efficient for synthesizing nanodiamonds, and that it is applicable to other organic precursors.

Keywords:  nanodiamonds      high pressure high temperature      phase transition      naphthalene  
Received:  25 July 2020      Revised:  03 August 2020      Accepted manuscript online:  07 August 2020
PACS:  81.05.ug (Diamond)  
  62.50.-p (High-pressure effects in solids and liquids)  
  64.70.Nd (Structural transitions in nanoscale materials)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Corresponding Authors:  Corresponding author. E-mail: yangxg@zzu.edu.cn Corresponding author. E-mail: jinhao_zang@zzu.edu.cn §Corresponding author. E-mail: cxshan@zzu.edu.cn   
About author: 
†Corresponding author. E-mail: yangxg@zzu.edu.cn
‡Corresponding author. E-mail: jinhao_zang@zzu.edu.cn
§Corresponding author. E-mail: cxshan@zzu.edu.cn
* Project supported by the National Key R&D Program of China (Grant No. 2018YFB0406500), the National Natural Science Foundation of China (Grant Nos. U1804155, U1604263, and 11804307), and the China Postdoctoral Science Foundation (Grant Nos. 2018M630830 and 2019T120631).

Cite this article: 

Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§ Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene 2020 Chin. Phys. B 29 108102

Scheme 1.  

Schematic of the synthesis of nanodiamonds via the two-step HPHT method. 1. cylindrical sample of the precursor naphthalene; 2. graphite container; 3. ZrO2 sleeve; 4. octahedron pressure medium of MgO.

Fig. 1.  

(a) XRD patterns and (b) Raman spectra of the naphthalene precursor and samples NX (X = 1–4) prepared using different carbonization time at 11.5 GPa and 1700 °C.

Step 1: Carbonization at 11.5 GPa and 700 °C Step 2: Diamondation at 11.5 GPa and 1700 °C
Timea/min Morphology Timeb/s Average size/nm
N1 35 / 300 457
N2 90 / 300 204
N3 135 / 300 62
N4 180 / 300 127
N5 35 amorphous / /
N6 90 chipped / /
N7 135 layered / /
N8 180 block / /
Table 1.  

The experimental conditions and results for samples NX (X = 1–8).

Fig. 2.  

(a)–(d) Grain size distributions of samples NX (X = 1–4) prepared using different carbonization time. The red curves show fitting of the lognormal distribution function. Inset shows the corresponding SEM images.

Fig. 3.  

Average grain size of samples NX (X = 1–4) as a function of carbonization time.

Fig. 4.  

(a) TEM image of sample N3. Inset shows HRTEM image of a single diamond particle from the white rectangle area marked in (a). (b) Selected area electron diffraction pattern of sample N3.

Fig. 5.  

(a) XRD patterns, (b) Raman spectra, and (c)–(f) SEM images of samples NX (X = 5–8) obtained using different carbonization time at 11.5 GPa and 700 °C.

Fig. 6.  

Raman spectra of diamond obtained employing (a) anthracene and (b) acridine as precursors in the two-step HPHT method.

[1]
Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250 DOI: 10.1038/nature13381
[2]
Wen B, Xu B, Wang Y B, Gao G Y, Zhou X F, Zhao Z S, Tian Y J 2019 npj. Comput. Mater. 5 117 DOI: 10.1038/s41524-019-0256-2
[3]
Hu W T, Wen B, Huang Q, Xiao J W, Yu D L, Wang Y B, Zhao Z S, He J L, Liu Z Y, Xu B, Tian Y J 2017 Sci. Chin. Mater. 60 178 DOI: 10.1007/s40843-016-5161-2
[4]
Su L X, Lou Q, Zang J H, Shan C X, Gao Y F 2017 Appl. Phys. Express 10 025102 DOI: 10.7567/APEX.10.025102
[5]
Mochalin V N, Shenderova O, Ho D, Gogotsi Y 2012 Nat. Nanotechnol. 7 11 DOI: 10.1038/nnano.2011.209
[6]
Chu H Y, Hsu W C, Lin J F 2010 Wear 268 960 DOI: 10.1016/j.wear.2009.12.023
[7]
Lin W M, Kato T, Ohmori H, Osawa E 2009 Key. Eng. Mater. 404 131 DOI: 10.4028/www.scientific.net/KEM.404.131
[8]
Kurtsiefer C, Mayer S, Zarda P, Weinfurter H 2000 Phys. Rev. Lett. 85 290 DOI: 10.1103/PhysRevLett.85.290
[9]
Zhang H C, Chen C K, Mei Y S, Li X, Jiang M Y, Hu X J 2019 Chin. Phys. B 28 076103 DOI: 10.1088/1674-1056/28/7/076103
[10]
Yang C, Wang X P, Wang L J, Pan X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101 DOI: 10.1088/1674-1056/22/8/088101
[11]
Zhang D X, Zhao Q, Zang J H, Lu Y J, Dong L, Shan C X 2018 Carbon 127 170 DOI: 10.1016/j.carbon.2017.11.009
[12]
Huang H J, Pierstorff E, Osawa E, Ho D 2007 Nano Lett. 7 3305 DOI: 10.1021/nl071521o
[13]
Zhang X Q, Chen M, Lam R, Xu X Y, Osawa E, Ho D 2009 ACS Nano 3 2609 DOI: 10.1021/nn900865g
[14]
Qin S R, Zhao Q, Cheng Z G, Su L X, Shan C X 2018 Acta Phys. Sin. 67 166801 in Chinese DOI: 10.7498/aps.67.20180862
[15]
Moore L, Chow E K H, Osawa E, Bishop J M, Ho D 2013 Adv. Mater. 25 3532 DOI: 10.1002/adma.201300343
[16]
Chang Y R, Lee H Y, Chen K, Chang C C, Tsai D S, Fu C C, Lim T S, Tzeng Y K, Fang C Y, Han C C, Chang H C, Fann W 2008 Nat. Nanotechnol. 3 284 DOI: 10.1038/nnano.2008.99
[17]
Zhang X Q, Lam R, Xu X Y, Chow E K, Kim H J, Ho D 2011 Adv. Mater. 23 4770 DOI: 10.1002/adma.201102263
[18]
Zhang K K, Zhao Q, Qin S R, Fu Y, Liu R Z, Zhi J F, Shan C X 2019 J. Colloid Interf. Sci. 537 316 DOI: 10.1016/j.jcis.2018.11.028
[19]
Su L X, Lou Q, Jiao Z, Shan C X 2016 Nanoscale Res. Lett. 11 425 DOI: 10.1186/s11671-016-1641-0
[20]
Khan M B, Khan Z H 2018 Nanodiamonds: synthesis and applications Singapore Springer Nature 1
[21]
Dong J J, Yao Z, Yao M G, Li R, Hu K, Zhu L Y, Wang Y, Sun H H, Sundqvist B, Yang K, Liu B B 2020 Phys. Rev. Lett. 124 065701 DOI: 10.1103/PhysRevLett.124.065701
[22]
Osawa E 2005 Disintegration and purification of crude aggregates of detonation nanodiamond: A few remarks on nano methodology Netherlands Springer 231
[23]
Pichot V, Comet M, Fousson E, Baras C, Senger A, Normand F L, Spitzer D 2008 Diam. Relat. Mater. 17 13 DOI: 10.1016/j.diamond.2007.09.011
[24]
Han F, Li S S, Jia X F, Chen W Q, Su T C, Hu M H, Yu K P, Wang J K, Wu Y M, Ma H A, Jia X P 2019 Chin. Phys. B 28 028103 DOI: 10.1088/1674-1056/28/2/028103
[25]
Fan X H, Xu B, Niu Z, Zhai T G, Tian B 2012 Chin. Phys. Lett. 29 048102 DOI: 10.1088/0256-307X/29/4/048102
[26]
Ekimov E A, Kudryavtsev O S, Mordvinova N E, Lebedev O I, Vlasov I I 2018 ChemNanoMat. 4 269 DOI: 10.1002/cnma.201700349
[27]
Konyashin I, Frost D J, Crossley A, Jurkschat K, Johnston C, Armstrong K 2016 Mater. Lett. 183 14 DOI: 10.1016/j.matlet.2016.07.065
[28]
Davydov V A, Agafonov V, Khabashesku V N 2016 J. Phys. Chem. C 120 29498 DOI: 10.1021/acs.jpcc.6b10805
[29]
Li Z, Zang J H, Lou Q, Yang X G, Dong B S, Liu T, Wang S L 2019 Chin. J. Lumin. 40 153 DOI: 10.3788/fgxb20194002.0153
[30]
Smith E M, Wang W Y 2016 Diam. Relat. Mater. 68 10 DOI: 10.1016/j.diamond.2016.05.010
[31]
Sokol G, Tomilenko A A, Bul’bak T A, Sokol L A, Persikov E S, Bukhtiyarov P G, Palyanov Y N 2018 High Press. Res. 38 468 DOI: 10.1080/08957959.2018.1517342
[32]
Walker D, Carpenter M A, Hitch C M 1990 Am. Miner. 75 1020
[33]
Leinenweber K D, Tyburczy J A, Sharp T G, Soignard E, Diedrich T, Petuskey W B, Wang Y, Mosenfelder J L 2012 Am. Miner. 97 353 DOI: 10.2138/am.2012.3844
[34]
Angadi V J, Anupama A V, Kumar R, Choudhary H K, Matteppanavar S, Somashekarappa H M, Rudraswamy B, Sahoo B 2017 Mater. Chem. Phys. 199 313 DOI: 10.1016/j.matchemphys.2017.07.021
[35]
Liang Y C, Liu K K, Lu Y J, Zhao Q, Shan C X 2018 Chin. Phys. B 27 078102 DOI: 10.1088/1674-1056/27/7/078102
[36]
Shinohara H, Yamakita Y, Ohno K 1998 J. Mol. Struct. 442 221 DOI: 10.1016/S0022-2860(97)00335-9
[37]
Tan D Z, Zhou S F, Xu B B, Chen P, Shimotsuma Y, Miura K, Qiu J R 2013 Carbon 62 374 DOI: 10.1016/j.carbon.2013.06.019
[38]
Franklin R E 1950 Acta. Cryst. 3 107 DOI: 10.1107/S0365110X50000264
[39]
Kinoshita K 1988 Carbon-electrochemical and physicochemical properties New York John Wiley & Sons
[40]
Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095 DOI: 10.1103/PhysRevB.61.14095
[41]
Yang X G, Yao M G, Wu X Y, Liu S J, Chen S L, Yang K, Liu R, Cui T, Sundqvist B, Liu B B 2017 Phys. Rev. Lett. 118 245701 DOI: 10.1103/PhysRevLett.118.245701
[42]
Chanyshev A D, Litasov K D, Furukawa Y, Kokh K A, Shatskiy A F 2017 Sci. Rep. 7 7889 DOI: 10.1038/s41598-017-08529-2
[43]
Spanu L, Donadio D, Hohl D, Schwegler E, Galli G 2011 Proc. Natl. Acad. Sci. 108 6843 DOI: 10.1073/pnas.1014804108
[44]
Fang S, Ma H A, Guo L S, Chen L C, Wang Y, Ding L Y, Cai Z H, Wang J, Jia X P 2019 Chin. Phys. B 28 098101 DOI: 10.1088/1674-1056/ab3445
[45]
Yang X G, Lv C F, Yao Z, Yao M G, Qin J X, Li X, Shi L, Du M R, Liu B B, Shan C X 2020 Carbon 159 266 DOI: 10.1016/j.carbon.2019.12.057
[46]
Higashi K, Onodera A 1986 Physica B+C 139 813 DOI: 10.1016/0378-4363(86)90708-4
[47]
Onodera A, Higashi K, Irie Y 1988 J. Mater. Sci. 23 422 DOI: 10.1007/BF01174666
[48]
Onodera A, Irie Y, Higashi K 1991 J. Appl. Phys. 69 2611 DOI: 10.1063/1.348652
[49]
Kamali A R, Fray D J 2015 Chem. Commun. 51 5594 DOI: 10.1039/C5CC00233H
[50]
Liu W Q, Ma H A, Li X L, Liang Z Z, Liu M L, Li R, Jia X P 2007 Chin. Phys. Lett. 24 1749 DOI: 10.1088/0256-307X/24/6/087
[51]
Guillou C L, Brunet F, Irifune T, Ohfuji H, Rouzaud J N 2007 Carbon 45 636 DOI: 10.1016/j.carbon.2006.10.005
[52]
Khaliullin R Z, Eshet H, Kuhne T D, Behler J, Parrinello M 2011 Nat. Mater. 10 693 DOI: 10.1038/nmat3078
[53]
Li Y D, Chen Y S, Su M J, Ran Q F, Wang C X, Ma H A, Fang C, Chen L C 2020 Chin. Phys. B 29 078101 DOI: 10.1088/1674-1056/ab90e8
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!