Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 106801    DOI: 10.1088/1674-1056/aba9bf
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance

Peng-Peng Zhang(张鹏鹏)1, Shi-Hua Tan(谭仕华)1,†, Xiao-Fang Peng(彭小芳)1,‡, and Meng-Qiu Long(龙孟秋)2
1 Hunan Provincial Key Laboratory of Materials Surface or Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
2 School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  

By applying nonequilibrium Green’s functions in combination with the density-functional theory, we investigate the electronic, thermal, and thermoelectric properties of four kinds of bases in DNA perpendicularly coupling between two ZGNR electrodes. The results show that the electron transport is highly sensitive to different base-ZGNR coupling geometries, and the system can present large rectifying and negative differential resistance effects. Moreover, the fluctuations of electronic transmission and super-low thermal conductance result in significant enhancement of the thermoelectric figure of merit (ZT): the ZT will be over 1.4 at room temperature, and over 1.6 at 200 K. The results show that the base-ZGNR coupling devices can present large rectifying, negative differential resistance, and enhanced thermoelectric effects.

Keywords:  DNA bases      graphene      electron transport      phonon transport      thermoelectric performance  
Received:  16 June 2020      Revised:  18 July 2020      Accepted manuscript online:  28 July 2020
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  44.10.+i (Heat conduction)  
  65.80.Ck (Thermal properties of graphene)  
  81.05.ue (Graphene)  
Corresponding Authors:  Corresponding author. E-mail: shtan@csuft.edu.cn   
About author: 
†Corresponding author. E-mail: shtan@csuft.edu.cn
‡Corresponding author. E-mail: xiaofangpeng11@163.com
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11704417 and 11247030), the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ40532), and the Talent Introducing Foundation of Central South University of Forestry and Technology (Grant No. 1040160).

Cite this article: 

Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋) Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance 2020 Chin. Phys. B 29 106801

Fig. 1.  

Schematic diagram of three kinds of base-ZGNR coupling devices (the bases are all sandwiched perpendicularly between two infinite N-ZGNR electrodes): (a) the base is parallel to the zigzag edges and the zigzag edges keep perfect in the structures (N-AGNR-I-(a)), (b) the base is parallel to the zigzag edges and the zigzag edges are disconnected in the scattering region (N-AGNR-I-(b)), (c) the base is vertically to the zigzag edges, and the left and right electrodes are non-coplanar (N-AGNR-I-(c)).

Fig. 2.  

Descriptions of the currents as a function of the applied bias of N-AGNR-I-(j). Purple solid, red solid, dashed, dotted, and dash-dotted curves in panels (a)–(f) correspond to the structures of pristine N-ZGNR, N-ZGNR-A-(j), N-ZGNR-C-(j), N-ZGNR-G-(j), and N-ZGNR-T-(j). Panels (a)–(c) correspond to 4-ZGNR-I-(a), 4-ZGNR-I-(b), and 4-ZGNR-I-(c); Panels (d)–(f) correspond to 5-ZGNR-I-(a), 5-ZGNR-I-(b), and 5-ZGNR-I-(c). The insets in panels (a)–(f) correspond to the rectification ratio RR.

Fig. 3.  

Panels (a)–(c) [(d)–(f)] describe the electron transmission spectra of 4-ZGNR-I-(a) (4-ZGNR-I-(b)) at bias voltages 0.6 V, 1.0 V, and 1.4 V. Purple solid, red solid, dashed, dotted, and dash-dotted curves in panels (a)–(c) [(d)–(f)] correspond to the structures of pristine 4-ZGNR, 4-ZGNR-A-(a), 4-ZGNR-C-(a), 4-ZGNR-G-(a), and 4-ZGNR-T-(a) (4-ZGNR, 4-ZGNR-A-(b), 4-ZGNR-C-(b), 4-ZGNR-G-(b), and 4-ZGNR-T-(b)). The left and right insets of panels (a) and (b) [(d) and (e)] show the LDOSs of 4-ZGNR-A-(a) and 4-ZGNR-C-(a) (4-ZGNR-A-(b) and 4-ZGNR-C-(b)) at E = 0.

Fig. 4.  

Panels (a)–(c) [(e)–(g)] describe the electron transmission spectra at bias voltages 0.2 V, 0.4 V, and 0.8 V (at bias −0.2 V, −0.4 V, and −0.8 V). Purple solid and red solid curves in panels (a)–(c) and (e)–(g) correspond to the structures of pristine 4-ZGNR and 4-ZGNR-A-(c). The insets of panels (a)–(b) and (e)–(f) show the LDOSs of 4-ZGNR-A-(c) at E = 0, and The insets of panels (c) and (g) show the LDOSs of 4-ZGNR-A-(c) at E = −0.24 eV. Solid, dashed, and dotted curves in panel (d) [(h)] describe the electron transmission spectra in pristine 4-ZGNR at bias 1.87 V, 4-ZGNR-G-(c) at bias 1.87 V, and 4-ZGNR-G-(c) at bias −1.87 V (pristine 4-ZGNR at bias 1.56 V, 4-ZGNR-T-(c) at bias 1.56 V, and 4-ZGNR-T-(c) at bias −1.56 V).

Fig. 5.  

Description of the currents as a function of the applied bias of 4-ZGNR-I-(h) and 4-ZGNR-I-(f) in panels (a) and (b). Purple solid, dashed, dotted, and dash-dotted curves in panel (a) correspond to the structures of N-ZGNR-A-(h), N-ZGNR-C-(h), N-ZGNR-G-(h), and N-ZGNR-T-(h). Purple solid, dashed, dotted, and dash-dotted curves in panel (b) correspond to the structures of N-ZGNR-A-(f), N-ZGNR-C-(f), N-ZGNR-G-(f), and N-ZGNR-T-(f). The insets in panels (a)–(b) correspond to the LDOS at E = 0.5 eV.

Fig. 6.  

Panels (a), (b), (c), and (d) describe the phonon transmission, thermal conductance, Seebeck coefficient, and ZT values of N-ZGNR-A-(i) (i = d and e) at temperature 200 K, respectively. Solid, dashed, dotted, and dash-dotted curves in panels (a), (b), (c), and (d) correspond to 4-ZGNR, 4-ZGNR-A-(d), 4-ZGNR-A-(e), and 5-ZGNR-A-(e). The inset in panel (b) corresponds to the thermal conductance ratio η (T) = ki/k0, and the dashed, dotted, and dash-dotted curves correspond to 4-ZGNR-A-(d), 4-ZGNR-A-(e), and 5-ZGNR-A-(e). The inset in panel (c) corresponds to the electron transmission spectra, and the solid, dashed, dotted, and dash-dotted curves correspond to 4-ZGNR, 4-ZGNR-A-(d), 4-ZGNR-A-(e), and 5-ZGNR-A-(e). The inset in panel (d) corresponds to the ZT value of 4-ZGNR-A-(e) at temperature 300 K.

[1]
Tao N J 2006 Nat. Nanotechnol. 1 173 DOI: 10.1038/nnano.2006.130
[2]
Angione M D, Pilolli R, Cotrone S et al. 2011 Mater. Today. 14 424 DOI: 10.1016/S1369-7021(11)70187-0
[3]
Aradhya S V, Venkataraman L 2013 Nat. Nanotechnol. 8 399 DOI: 10.1038/nnano.2013.91
[4]
Yee S K, Sun J, Darancet P, Tilley T D, Majumdar A, Neaton J B 2011 ACS Nano 5 9256 DOI: 10.1021/nn203520v
[5]
Capozzi B, Xia J, Adak O et al. 2015 Nat. Nanotechnol. 10 522 DOI: 10.1038/nnano.2015.97
[6]
Cao H, Ma J, Luo Y 2010 Nano Res. 3 350 DOI: 10.1007/s12274-010-1038-9
[7]
Chen L, Hu Z, Zhao A, Wang B, Luo Y, Yang J 2007 Phys. Rev. Lett. 99 146803 DOI: 10.1103/PhysRevLett.99.146803
[8]
Geng H, Hu Y, Shuai Z, Xia K, Gao H, Chen K 2007 J. Phys. Chem. C 111 19098 DOI: 10.1021/jp077533f
[9]
Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016 Carbon 98 179 DOI: 10.1016/j.carbon.2015.11.011
[10]
Kuang G, Chen S Z, Wang W, Lin T, Chen K, Shang X, Liu P N, Lin N 2016 J. Am. Chem. Soc. 138 11140 DOI: 10.1021/jacs.6b07416
[11]
Wu D, Cao X H, Chen S Z, Tang L M, Feng Y X, Chen K Q, Zhou W X 2019 J. Mater. Chem. A. 7 19037 DOI: 10.1039/C9TA04642A
[12]
Liu Y Y, Zeng Y J, Jia P Z et al. 2018 J. Phys.: Condens. Matter 30 275701 DOI: 10.1088/1361-648X/aac7f5
[13]
Li Q, Tang L, Zhang C et al. 2017 Appl. Phys. Lett. 111 171602 DOI: 10.1063/1.4998305
[14]
Wu D, Cao X H, Jia P Z et al. 2020 Sci. China-Phys. Mech. Astron. 63 276811 DOI: 10.1007/s11433-019-1528-y
[15]
Zeng Y J, Wu D, Cao X H et al. 2020 J. Mater. Chem. A 8 11884 DOI: 10.1039/D0TA02423F
[16]
Liang L, Meunier V 2013 Appl. Phys. Lett. 102 143101 DOI: 10.1063/1.4800777
[17]
Xu Y, Li Z, Duan W 2014 Small 10 2182 DOI: 10.1002/smll.201303701
[18]
He J, Tritt T M 2017 Science 357 1369 DOI: 10.1126/science.aak9997
[19]
Gao R B, Peng X F, Jiang X T, Tan X H, Long M Q 2019 Org. Electron. 67 57 DOI: 10.1016/j.orgel.2019.01.006
[20]
Krsti@@@ P, Ashcroft B, Lindsay S 2015 Nanotechnology 26 084001 DOI: 10.1088/0957-4484/26/8/084001
[21]
Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A 2016 Nat. Rev. Mater. 1 16050 DOI: 10.1038/natrevmats.2016.50
[22]
Zhang Q, Sun Y, Xu W, Zhu D 2014 Adv. Mater. 26 6829 DOI: 10.1002/adma.v26.40
[23]
Wu Q H, Zhao P, Liu D S, Li S J, Chen G 2014 Org. Electron. 15 3615 DOI: 10.1016/j.orgel.2014.10.010
[24]
Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819 DOI: 10.1021/nl404182k
[25]
Liu X, Zhang G, Zhang Y W 2016 Nano Lett. 16 4954 DOI: 10.1021/acs.nanolett.6b01565
[26]
Peng X F, Chen KQ, Wang XJ, Tan S H 2016 Carbon 100 36 DOI: 10.1016/j.carbon.2015.12.093
[27]
Lv R, Chen G, Li Q, McCreary A et al. 2015 Proc. Natl. Acad. Sci. USA 112 14527 DOI: 10.1073/pnas.1505993112
[28]
Xu Y F, Liu Z B, Zhang X L, Wang Y, Tian J G, Huang Y, Ma Y F, Zhang X Y, Y S 2009 Adv. Mater. 21 1275 DOI: 10.1002/adma.v21:12
[29]
Zeng J, Chen K Q, Tong Y X 2018 Carbon 127 611 DOI: 10.1016/j.carbon.2017.11.047
[30]
Xiao N, Dong X, Song L, Liu D et al. 2011 ACS Nano 5 2749 DOI: 10.1021/nn2001849
[31]
Hang P H, Bahramy M S, Nagaosa N, Nikoli@@@ B K 2014 Nano Lett. 14 3779 DOI: 10.1021/nl500755m
[32]
Tan S H, Chen K Q 2015 Carbon 94 942 DOI: 10.1016/j.carbon.2015.07.083
[33]
Heerema S J, Dekker C 2016 Nat. Nanotechnol. 11 127 DOI: 10.1038/nnano.2015.307
[34]
Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502 DOI: 10.1063/1.3600067
[35]
Zeng J, Chen K Q, He J, Zhang X J, Sun C Q 2011 J. Phys. Chem. C 115 25072 DOI: 10.1021/jp208248v
[36]
He Y, Garnica M, Bischoff F, Ducke J, Bocquet M L, Batzill M, Auwärter W, Barth J V 2017 Nat. Chem. 9 33 DOI: 10.1038/nchem.2600
[37]
Xu Q, Scuri G, Mathewson C, Kim P, Nuckolls C, Bouilly D 2017 Nano Lett. 17 5335 DOI: 10.1021/acs.nanolett.7b01745
[38]
Baghsiyahi F B, Akhtar A, Yeganeh M 2018 Int. J. Mod. Phys. B 32 1850207 DOI: 10.1142/S0217979218502077
[39]
Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207 DOI: 10.1103/PhysRevB.31.6207
[40]
Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104 DOI: 10.1103/PhysRevB.63.121104
[41]
Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407 DOI: 10.1103/PhysRevB.63.245407
[42]
Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401 DOI: 10.1103/PhysRevB.65.165401
[43]
Jiang J W, Wang J S, Li B 2011 J. Appl. Phys. 109 014326 DOI: 10.1063/1.3531573
[44]
Wang J S, Wang J, Lü J T 2008 Eur. Phys. J. B 62 381 DOI: 10.1140/epjb/e2008-00195-8
[45]
Shen L, Zeng M, Li S, Sullivan M B, Feng Y P 2012 Phys. Rev. B 86 115419 DOI: 10.1103/PhysRevB.86.115419
[46]
Kim W Y, Kim K S 2008 Nat. Nanotech. 3 408 DOI: 10.1038/nnano.2008.163
[47]
Son Y W, Cohen M L, Louie S G 2006 Nature 444 347 DOI: 10.1038/nature05180
[48]
Zhang P P, Tan S H, Long M Q, Peng X F 2019 Appl. Phys. Express 12 125005 DOI: 10.7567/1882-0786/ab5454
[49]
Wang Z Q, Tang F, Dong M M et al. 2020 Chin. Phys. B 29 067202 DOI: 10.1088/1674-1056/ab84cf
[50]
Fan Z Q, Zhang Z H, Xie F et al. 2015 Org. Electron. 18 101 DOI: 10.1016/j.orgel.2015.01.023
[51]
Chen X K, Chen K Q 2020 J. Phys.: Condens. Matter 32 153002 DOI: 10.1088/1361-648X/ab5e57
[52]
Zhang G P, Mu Y Q, Zhao J M et al. 2019 Physica E 109 1 DOI: 10.1016/j.physe.2018.12.032
[53]
Mu Y Q, Zhao J M, Chen L Y et al. 2020 Org. Electron. 81 105665 DOI: 10.1016/j.orgel.2020.105665
[54]
Li Z, Qian H, Wu J, Gu B L, Duan W H 2008 Phys. Rev. Lett. 100 206802 DOI: 10.1103/PhysRevLett.100.206802
[55]
Im J, Sen S, Lindsay S, Zhang P 2018 ACS Nano 12 7067 DOI: 10.1021/acsnano.8b02819
[56]
Shendure J, Balasubramanian S, Church G M et al. 2017 Nature 550 345 DOI: 10.1038/nature24286
[57]
Chang S, Shuo H S, He J, Liang F, Zhang P, Li S 2010 Nano Lett. 10 1070 DOI: 10.1021/nl1001185
[58]
Huang S, He J, Chang S, Zhang P, Liang F, Li S, Chen X, Sankey O, Lindsay S 2010 Nano Lett. 5 868 DOI: 10.1007/s11671-010-9577-2
[59]
Tsutsui M, Taniguchi M, Yokota K, Kawai T 2010 Nat. Nanotechnol. 5 286 DOI: 10.1038/nnano.2010.42
[60]
Pan C N, Xie Z X, Tang L M, Chen K Q 2012 Appl. Phys. Lett. 101 103115 DOI: 10.1063/1.4751287
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!