Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107101    DOI: 10.1088/1674-1056/abab77
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal

Zedong Li(李泽东) and Z F Wang(王征飞)†
1 Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

The nontrivial topology is investigated in a dodecagonal quasicrystal made of 30° twisted bilayer graphene (TBG). Based on tight-binding model with both exchange field and Rashba spin–orbit coupling, the topological index, chiral edge states, and quantum conductance are calculated to distinguish its unique topological phase. A high Bott index (B = 4) quantum anomalous Hall effect (QAHE) is identified in TBG quasicrystal, which is robust to a finite perturbation without closing the nontrivial gap. Most remarkably, we have found that the multiple Dirac cone replicas in TBG quasicrystal are only a spectra feature without generating extra chiral edge states. Our results not only propose a possible way to realize the QAHE in quasicrystal, but also identify the continuity of nontrivial topology in TBG between crystal and quasicrystal.

Keywords:  quasicrystal      twisted bilayer graphene      quantum anomalous Hall effect  
Received:  06 May 2020      Revised:  24 July 2020      Accepted manuscript online:  01 August 2020
PACS:  71.23.Ft (Quasicrystals)  
  73.43.Cd (Theory and modeling)  
  72.15.Cz (Electrical and thermal conduction in amorphous and liquid metals and Alloys ?)  
Corresponding Authors:  Corresponding author. E-mail: zfwang15@ustc.edu.cn   
About author: 
†Corresponding author. E-mail: zfwang15@ustc.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11774325 and 21603210), the National Key Research and Development Program of China (Grant No. 2017YFA0204904), and Fundamental Research Funds for the Central Universities, China.

Cite this article: 

Zedong Li(李泽东) and Z F Wang(王征飞)† Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal 2020 Chin. Phys. B 29 107101

Fig. 1.  

Bott index of TBG quasicrystal with different intensities of tR. The inset is the atomic structure of TBG quasicrystal. λ = 0.18t1 and t2 = 0.12t1.

Fig. 2.  

(a) Discrete energy levels of TBG quasicrystal. (b) Bulk LDOS of TBG quasicrystal. The two dashed lines denote the region of bulk gap. The discrete energy levels in bulk gap are the in-gap chiral edge states. The spatial distribution of in-gap chiral edge state at the energy level marked by the blue dot is shown in the inset of (a), which is localized at the boundary of TBG quasicrystal. The circle size denotes the weight of chiral edge state. λ = 0.18t1, tR = 0.2t1, t2 = 0.12t1.

Fig. 3.  

(a) Bulk LDOS with different intensities of tR. The two dashed lines denote the region of bulk gap. λ = 0.18t1, t2 = 0.12t1. (b) The number of in-gap edge state vs. the system size. The dashed line is a linear fitting of the calculated results. tR = 0.2t1.

Fig. 4.  

(a) Device setup of the TBG quasicrystal ribbon. The square lattice denotes the semi-infinite lead region. (b) Conductance vs. the energy without disorder. (c) and (d) LDOS distribution in the center-scattering region at the energy level marked by the blue dots in (b). (e)–(g) Conductance vs. the energy with on-site-energy, interlayer, and intralayer hopping disorder, respectively. The error bar denotes the fluctuation of conductance among different disorder configurations. λ = 0.18t1, tR = 0.2t1, t2 = 0.12t1.

[1]
Haldane F D M 1988 Phys. Rev. Lett. 61 2015 DOI: 10.1103/PhysRevLett.61.2015
[2]
He K, Wang Y, Xue Q K 2014 Nat. Sci. Rev. 1 38 DOI: 10.1093/nsr/nwt029
[3]
Weng H, Yu R, Hu X, Dai X, Fang Z 2015 Adv. Phys. 64 227 DOI: 10.1080/00018732.2015.1068524
[4]
Liu C X, Zhang S C, Qi X L 2016 Annu. Rev. Condens. Matter Phys. 7 301 DOI: 10.1146/annurev-conmatphys-031115-011417
[5]
Wang Z F, Liu Z, Liu F 2013 Phys. Rev. Lett. 110 196801 DOI: 10.1103/PhysRevLett.110.196801
[6]
Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61 DOI: 10.1126/science.1187485
[7]
Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J, Niu Q 2010 Phys. Rev. B 82 161414 DOI: 10.1103/PhysRevB.82.161414
[8]
Ding J, Qiao Z, Feng W, Yao Y, Niu Q 2011 Phys. Rev. B 84 195444 DOI: 10.1103/PhysRevB.84.195444
[9]
Zhang H, Lazo C, Blügel S, Heinze S, Mokrousov Y 2012 Phys. Rev. Lett. 108 056802 DOI: 10.1103/PhysRevLett.108.056802
[10]
Wang J, Lian B, Zhang H, Xu Y, Zhang S C 2013 Phys. Rev. Lett. 111 136801 DOI: 10.1103/PhysRevLett.111.136801
[11]
Wu S C, Shan G, Yan B 2014 Phys. Rev. Lett. 113 256401 DOI: 10.1103/PhysRevLett.113.256401
[12]
Dolui K, Ray S, Das T 2015 Phys. Rev. B 92 205133 DOI: 10.1103/PhysRevB.92.205133
[13]
Dong L, Kim Y, Er D, Rappe A M, Shenoy V B 2016 Phys. Rev. Lett. 116 096601 DOI: 10.1103/PhysRevLett.116.096601
[14]
Wang Z F, Liu Z, Yang J, Liu F 2018 Phys. Rev. Lett. 120 156406 DOI: 10.1103/PhysRevLett.120.156406
[15]
Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167 DOI: 10.1126/science.1234414
[16]
Bestwick A J, Fox E J, Kou X, Pan L, Wang K L, haber-Gordon D 2015 Phys. Rev. Lett. 114 187201 DOI: 10.1103/PhysRevLett.114.187201
[17]
Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895 DOI: 10.1126/science.aax8156
[18]
Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mater. 19 522 DOI: 10.1038/s41563-019-0573-3
[19]
Liu X, Hsu H C, Liu C X 2013 Phys. Rev. Lett. 111 086802 DOI: 10.1103/PhysRevLett.111.086802
[20]
Ren Y, Zeng J, Deng X, Yang F, Pan H, Qiao Z 2016 Phys. Rev. B 94 085411 DOI: 10.1103/PhysRevB.94.085411
[21]
Zhong P, Ren Y, Han Y, Zhang L, Qiao Z 2017 Phys. Rev. B 96 241103(R) DOI: 10.1103/PhysRevB.96.241103
[22]
Liu Z, Zhao G, Liu B, Wang Z F, Yang J, Liu F 2018 Phys. Rev. Lett. 121 246401 DOI: 10.1103/PhysRevLett.121.246401
[23]
Bandres M A, Rechtsman M C, Segev M 2016 Phys. Rev. X 6 011016 DOI: 10.1103/PhysRevX.6.011016
[24]
Agarwala A, Shenoy V B 2017 Phys. Rev. Lett. 118 236402 DOI: 10.1103/PhysRevLett.118.236402
[25]
Liu C, Gao W, Yang B, Zhang S 2017 Phys. Rev. Lett. 119 183901 DOI: 10.1103/PhysRevLett.119.183901
[26]
Mitchell N P, Nash L M, Hexner D, Turner A M, Irvine W T M 2018 Nat. Phys. 14 380 DOI: 10.1038/s41567-017-0024-5
[27]
Huang H, Liu F 2018 Phys. Rev. Lett. 121 126401 DOI: 10.1103/PhysRevLett.121.126401
[28]
Huang H, Liu F 2018 Phys. Rev. B 98 12513 DOI: 10.1103/PhysRevA.98.012513
[29]
Costa M, Schleder G R, Nardelli M B, Lewenkopf C, Fazzio A 2019 Nano Lett. 19 8941 DOI: 10.1021/acs.nanolett.9b03881
[30]
Chen R, Chen C Z, Gao J H, Bin Zhou, Xu D H 2020 Phys. Rev. Lett. 124 036803 DOI: 10.1103/PhysRevLett.124.036803
[31]
Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801 DOI: 10.1103/PhysRevLett.95.226801
[32]
Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809 DOI: 10.1103/PhysRevLett.99.236809
[33]
Castro Neto A H, Guinea F, N Peres M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109 DOI: 10.1103/RevModPhys.81.109
[34]
Kotov V N, Uchoa B, Pereira V M, Guinea F, Castro Neto A H 2012 Rev. Mod. Phys. 84 1067 DOI: 10.1103/RevModPhys.84.1067
[35]
Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80 DOI: 10.1038/nature26154
[36]
Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43 DOI: 10.1038/nature26160
[37]
Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802 DOI: 10.1103/PhysRevLett.99.256802
[38]
Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W, Ahn J R 2018 Science 361 782 DOI: 10.1126/science.aar8412
[39]
Yao W, Wang E, Bao C, Zhang Y, Zhang K, Bao K, Chan C K, Chen C, Avila J, Asensio M C, Zhu J, Zhou S 2018 Proc. Natl. Acad. Sci. USA 115 6928 DOI: 10.1073/pnas.1720865115
[40]
Qiao Z, Tse W K, Jiang H, Yao Y, Niu Q 2011 Phys. Rev. Lett. 107 256801 DOI: 10.1103/PhysRevLett.107.256801
[41]
Wang Z F, Liu F, Chou M Y 2012 Nano Lett. 12 3833 DOI: 10.1021/nl301794t
[42]
Loring T A, Hastings M B 2010 Europhys. Lett. 92 67004 DOI: 10.1209/0295-5075/92/67004
[43]
Hastings M B, Loring T A 2011 Ann. Phys. 326 1699 DOI: 10.1016/j.aop.2010.12.013
[44]
Loring T A 2015 Ann. Phys. 356 383 DOI: 10.1016/j.aop.2015.02.031
[45]
Wang Z F, Liu F 2010 ACS Nano 4 2459 DOI: 10.1021/nn1001722
[46]
Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A H, Niu Q 2014 Phys. Rev. Lett. 112 116404 DOI: 10.1103/PhysRevLett.112.116404
[1] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[2] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[3] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[4] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[5] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[6] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[7] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[8] Non-Hermitian quasicrystal in dimerized lattices
Longwen Zhou(周龙文) and Wenqian Han(韩雯岍). Chin. Phys. B, 2021, 30(10): 100308.
[9] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[10] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[11] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[12] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[13] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[14] Possible nodeless s±-wave superconductivity in twisted bilayer graphene
Zhe Liu(刘哲), Yu Li(李宇), Yi-Feng Yang(杨义峰). Chin. Phys. B, 2019, 28(7): 077103.
[15] Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal
Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英). Chin. Phys. B, 2017, 26(9): 094601.
No Suggested Reading articles found!