Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 035202    DOI: 10.1088/1674-1056/ac1b90
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"

Hao Li(李郝)1, Zheng-Ping Zhang(张正平)1,2,3, and Xin Yang (杨鑫)1,2,3,†
1 College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China;
2 Semiconductor Power Device Reliability Engineering Research Center of Ministry of Education, Guizhou University, Guiyang 550025, China;
3 Key Laboratory of Micro-Nano-Electronics and Software Technology of Guizhou Province, Guiyang 550025, China
Abstract  The application of magnetic fields, electric fields, and the increase of the electromagnetic wave frequency are up-and-coming solutions for the blackout problem. Therefore, this study considers the influence of the external magnetic field on the electron flow and the effect of the external electric field on the electron density distribution, and uses the scattering matrix method (SMM) to perform theoretical calculations and analyze the transmission behavior of terahertz waves under different electron densities, magnetic field distributions, and collision frequencies. The results show that the external magnetic field can improve the transmission of terahertz waves at the low-frequency end. Magnetizing the plasma from the direction perpendicular to the incident path can optimize the right-hand polarized wave transmission. The external electric field can increase the transmittance to some extent, and the increase of the collision frequency can suppress the right-hand polarized wave cyclotron resonance caused by the external magnetic field. By adjusting these parameters, it is expected to alleviate the blackout phenomenon to a certain extent.
Keywords:  terahertz wave      scattering matrix method (SMM)      nonuniform magnetized plasma      electric field  
Received:  24 June 2021      Revised:  31 July 2021      Accepted manuscript online:  07 August 2021
PACS:  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
  52.25.Fi (Transport properties)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the Open Foundation of Semiconductor Power Device Reliability Engineering Research Center of Ministry of Education, China (Grant No. ERCMEKFJJ2019-(05)), the Natural Science Foundation of Guizhou University, China (Grant No. (2019)62), and the China Scholarship Council (Grant No. 202106675002).
Corresponding Authors:  Xin Yang     E-mail:  e_yangx@126.com

Cite this article: 

Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫) Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window" 2022 Chin. Phys. B 31 035202

[1] Dunn M G and Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washington:National Aeronautics and Space Administration) NASA-CR-2232
[2] Gupta R N, Yos J M, Thompson R A and Lee K P 1990 A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K (Hampton:Langley Research Center) NASA-RP-1232
[3] Keidar M, Kim M and Boyd I D 2008 J. Spacecr. Rockets 45 445
[4] Rybak J P and Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879
[5] Cook D J and Hochstrasser R M 2000 Opt. Lett. 25 1210
[6] Kim M, Keidar M and Boyd I D 2008 J. Spacecr. Rockets 45 1223
[7] Gillman E D, Foster J E and Blankson I M 2010 Review of Leading Approaches for Mitigating Hypersonic Vehicle Communications Blackout and a Method of Ceramic Particulate Injection Via Cathode Spot Arcs for Blackout Mitigation (Washington:National Aeronautics and Space Administration) NASA-TM-2010-216220
[8] Shi L, Guo B L, Liu Y M and Li J T 2012 Prog. Electromagn. Res. 123 321
[9] Gao X and Jiang B 2015 J. Appl. Phys. 117 233301
[10] Zhou H, Li X, Liu Y, Bai B and Xie K 2017 IEEE Trans. Plasma Sci. 45 15
[11] Zhang Y Y, Xu G J and Zheng Z Q 2019 Optik 182 618
[12] Lemmer K M, Gallimore A D, Smith T B, Davis C N and Peterson P 2009 J. Spacecr. Rockets 46 1100
[13] Kim M, Keidar M and Boyd I D 2008 IEEE Trans. Plasma Sci. 36 1198
[14] Kalluri D K, Goteti V R and Sessler A M 1993 IEEE Trans. Plasma Sci. 21 70
[15] Hu B J, Wei G and Lai S L 1999 IEEE Trans. Plasma Sci. 27 1131
[16] Lv C J, Cui Z W and Han Y P 2019 Chin. Phys. B 28 74203
[17] Chu Q X and Ding H 2006 IEEE Trans. Magn. 42 3141
[18] Yuan C X, Zhou Z X, Zhang J W, Xiang X L, Yue F and Sun H G 2011 IEEE Trans. Plasma Sci. 39 1577
[19] Tian Y, Han Y P, Ling Y J and Ai X 2014 Phys. Plasmas 21 23301
[20] Liu S, Chen S, He Z F, Zhong S Y and Wang H Q 2015 Wave. Random Complex 25 393
[21] Tian Y X, Yan W Z, Gu X L, Jin X L, Li J Q and Li B 2017 AIP Adv. 7 125325
[22] Cong C, Shi C and Shi Z 2018 Optik 159 69
[23] Rahmani Z, Moradi H and Tazimi N 2020 Indian J. Phys. 94 935
[24] Rao Q W, Xu G J, Wang P F and Zheng Z Q 2021 Sensors 21 263
[25] Chen A T, Sun H Y, Han Y P, Wang J J and Cui Z W 2019 Chin. Phys. B 28 14201
[26] Yu H, Xu G J and Zheng Z Q 2019 Optik 188 244
[27] Guo L J, Guo L X, Li J T and Ai X 2017 Phys. Plasmas 24 22108
[28] Zhang J, Fu H Y and Scales W 2018 IEEE Trans. Plasma Sci. 46 2146
[29] Li H, Yang X and Zhang Z P 2021 Acta Phys. Sin. 70 075202 (in Chinese)
[30] Heald M A, Wharton C B and Furth H P 1965 Phys. Today 18 72
[31] Ouyang W C, Jin T, Wu Z W and Deng W F 2021 IEEE Trans. Plasma Sci. 49 460
[32] Yeh C and Rusch W V T 1965 J. Appl. Phys. 36 2302
[33] Yuan C X, Zhou Z X, Xiang X L, Sun H G and Pu S Z 2010 Phys. Plasmas 17 113304
[1] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[2] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[3] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[4] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[5] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[6] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[7] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[8] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[9] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[10] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[11] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[12] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[13] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[14] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
[15] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
No Suggested Reading articles found!