Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108503    DOI: 10.1088/1674-1056/ab9c0c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition

Deepika1, Raju Kumar1, Ritesh Kumar1, Kamdeo Prasad Yadav1, Pratyush Vaibhav2, Seema Sharma3, Rakesh Kumar Singh4, and Santosh Kumar1,
1 College of Commerce, Arts and Science, Patna, Bihar, India
2 Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India
3 Anugrah Narayan College, Patna, Bihar, India
4 Aryabhatta Knowledge University, Patna, Bihar, India
Abstract  

Zn0.90Ni0.10O nanoparticles have been synthesized by single-bath two-electrode electrodeposition at constant voltage. X-ray diffraction, UV vis and photoluminescence studies reveal that a single-phase polycrystalline hcp wurtzite crystal structure of ZnO is evolved. The material consists of a large number of defects such as oxygen vacancy (Ov) and zinc interstitial (Zi). The magnetization study reveals that the sample exhibits room-temperature global ferromagnetism and the ferromagnetic ordering seems to be defect induced via bound magnetic polaron mechanism, and double exchange is also expected to have played role. Interesting optoelectronic properties have been found in the synthesized sample and the material seems to be a potential candidate to be used as a UV sensor. Such a transition metal doped ZnO based dilute magnetic semiconducting system exhibiting room-temperature ferromagnetism is likely to be first of its kind in the sense that such materials have not yet been reported to be synthesized by the simple method of electrodeposition to the best of our knowledge on the basis of ample literature review.

Keywords:  dilute magnetic semiconductors (DMS)      bound magnetic polaron      photoluminescence      ferromagnetism  
Received:  16 April 2020      Revised:  16 May 2020      Accepted manuscript online:  12 June 2020
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.30.Et (Exchange and superexchange interactions)  
Corresponding Authors:  Corresponding author. E-mail: skphysics@yahoo.co.in   
About author: 
†Corresponding author. E-mail: skphysics@yahoo.co.in
* Project supported by the UGC-DAE, Consortium for Scientific Research, Indore through its CRS project bearing No. CSR-IC/MSRSR-12/CRS-220/2017-18/1301.

Cite this article: 

Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar† Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition 2020 Chin. Phys. B 29 108503

Fig. 1.  

XRD pattern of (a) Ni-doped ZnO and (b) undoped ZnO, both synthesized by electrodeposition and annealed at 700 °C in air for one hour.

Fig. 2.  

(a) UV visible graph of un-doped ZnO (synthesized by electrodeposition and annealed at 700 °C in air for one hour) for absorbance and band gap determination. (b) UV visible graph of Ni-doped ZnO (synthesized by electrodeposition and annealed at 700 °C in air for one hour) for absorbance and band gap determination.

Fig. 3.  

(a) PL spectra of Ni-doped ZnO synthesized by electrodeposition and annealed at 700 °C in air for one hour. (b) PL spectra of undoped ZnO synthesized by electrodeposition and annealed at 700 °C in air for one hour.

Fig. 4.  

VSM graph of Ni-doped ZnO synthesized by electrodeposition and annealed at 700 °C in air for one hour.

[1]
Wolf S A, Awschalom D D, Nuhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Tregger D M 2001 Science 294 1488 DOI: 10.1126/science.1065389
[2]
Sarma S D 2001 Am. Sci. 89 516 DOI: 10.1511/2001.6.516
[3]
Zntic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323 DOI: 10.1103/RevModPhys.76.323
[4]
Awschalom D D, Flatte M E 2007 Nat Phys. 3 153 DOI: 10.1038/nphys551
[5]
Felser C, Fecher G H, Balke B 2007 Angew Chem. 46 668 DOI: 10.1002/anie.200601815
[6]
Furdyna J K 1988 J. Appl. Phys. 64 R29 DOI: 10.1063/1.341700
[7]
Ohno H 1998 Science 281 951 DOI: 10.1126/science.281.5379.951
[8]
Dietl T, Ohno H, Matsukura F, Cibbert J, Ferrand D 2000 Science 287 1019 DOI: 10.1126/science.287.5455.1019
[9]
Dietl T 2002 Semicond. Sci. Technol. 17 377 DOI: 10.1088/0268-1242/17/4/310
[10]
Dietl T 2003 Nat. Mater. 2 646 DOI: 10.1038/nmat989
[11]
Prellier W, Fouchet A, Mercey B 2003 J. Phys.: Condens. Matter 15 R1583 DOI: 10.1088/0953-8984/15/37/R01
[12]
Pearton S J, Heo W H, Ivill M, Norton D P, Steinner T 2004 Semicond. Sci. Technol. 19 R59 DOI: 10.1088/0268-1242/19/10/R01
[13]
Bryan J D, Gainelin D R 2005 Prog. Inorg. Chem. 54 47 DOI: 10.1002/0471725560.ch2
[14]
Macdonald A H, Schiffer P, Samarth N 2005 Nat. Mater. 4 195 DOI: 10.1038/nmat1325
[15]
Kuroda S, Nishizawa N, Takita K, Mitome M, Bando Y, Osuch K, Dietl T 2007 Nat. Mater. 6 440 DOI: 10.1038/nmat1910
[16]
Sundaresan A, Rao C N R 2009 Nano Today 4 96 DOI: 10.1016/j.nantod.2008.10.002
[17]
Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1 DOI: 10.1016/j.mser.2008.04.002
[18]
Potzat K, Zhou S 2009 Phys. Status Solid B 246 1147 DOI: 10.1002/pssb.200844272
[19]
Janisch R, Gopal P, Spladin N A 2005 J. Phys.: Conden Matter 17 R657 DOI: 10.1088/0953-8984/17/27/R01
[20]
Ogale Satishchandra B 2010 Adv. Mater. 22 3125 DOI: 10.1002/adma.200903891
[21]
Wakano T, Fujimura N, Morinaga Y, Abe N, Ashida A 2001 Physica E 10 260 DOI: 10.1016/S1386-9477(01)00095-9
[22]
Schwartz D A, Kittils K R, Gamellin D R 2004 Appl. Phys. Lett. 85 1395 DOI: 10.1063/1.1785872
[23]
Radovanovic P V, Norberg N S, Menally K E, Gamellin D R 2002 J. Am. Chem. Soc. 124 15192 DOI: 10.1021/ja028416v
[24]
Srinet G, Kumar R, Sajal V 2013 J. Appl. Phys. 114 033912 DOI: 10.1063/1.4813868
[25]
Liu X, Lin F, Sun L, Cheng W, Ma X, Shi W 2006 Appl. Phys. Lett. 88 062508 DOI: 10.1063/1.2170420
[26]
Liu X J, Zhu X Y, Song C, Zeng F, Pan F 2009 J. Phys. D: Appl. Phys. 42 035004 DOI: 10.1088/0022-3727/42/3/035004
[27]
Satyarthi P, Ghosh S, Pandey B, Kumar P, Chen C L, Dong C L, Pong W F, Kanjibal D, Asokan K, Srivastava P 2013 J. Appl. Phys. 113 18 183708 DOI: 10.1063/1.4804253
[28]
Tong L N, He X M, Han H B, Hu J L, Xia A L, Tong Y 2010 Solid State Commun. 150 1112 DOI: 10.1016/j.ssc.2010.03.029
[29]
Singhal R K, Sharma S C, Kumari P, Kumar S, Xig Y T, Deshpande U P, Shripak T, Saitovitch E 2011 J. Appl. Phys. 109 063907 DOI: 10.1063/1.3556458
[30]
Anindita Samanta, Goswami M N, Mahapatra P K 2018 J. Alloys Compd. 730 399 DOI: 10.1016/j.jallcom.2017.09.334
[31]
Ali M, Sharif S, Anjum S, Imran M, Ikram M, Naz M, Ali S 2020 Mater Res. Express 6 1250d5 DOI: 10.1088/2053-1591/ab6383
[32]
Prashant Kumar Mishra, Rahul Amin, Sajal Biring, Somaditya Sen 2019 AIP Conf. Proc. 2100 020121 DOI: 10.1063/1.5098675
[33]
Lu Y B, Dai Y, Guo M, Yu L, Huang B B 2013 Phys. Chem. Chem. Phys. 15 5208 DOI: 10.1039/c3cp44047h
[34]
Yang K S, Wu R Q, Shen L, Feng Y P, Dai Y, Huang B B 2010 Phys. Rev. 81 125211 DOI: 10.1103/PhysRevB.81.125211
[35]
Pan H, Yi J B, Shen L, Wu R Q, Yang J H, Lin J Y, Feng Y P, Ding J, Van L H, Yin J H 2007 Phys. Rev. Lett. 99 127201 DOI: 10.1103/PhysRevLett.99.127201
[36]
Nayak Sanjeev K, Gruner E, Sung Sakong, Shreekantha Sil, Peter Kartzer, Behera N, Peter Entel 2012 Phys. Rev. B 86 054441 DOI: 10.1103/PhysRevB.86.054441
[37]
Liu L, Peter Y Yu, Ma Z X, Mao S 2008 Phys. Rev. Lett. 100 127203 DOI: 10.1103/PhysRevLett.100.127203
[38]
Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D, Feng Y P 2008 Phys. Rev. B 78 073306 DOI: 10.1103/PhysRevB.78.073306
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[6] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[7] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[8] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[9] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[10] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[11] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[12] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[13] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[14] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[15] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
No Suggested Reading articles found!