Investigation of single event effect in 28-nm system-on-chip with multi patterns
Wei-Tao Yang(杨卫涛)1,4, Yong-Hong Li(李永宏)1,†, Ya-Xin Guo(郭亚鑫)1, Hao-Yu Zhao(赵浩昱)1, Yang Li(李洋)1, Pei Li(李培)1, Chao-Hui He(贺朝会)1, Gang Guo(郭刚)2, Jie Liu(刘杰)3, Sheng-Sheng Yang(杨生胜)5, and Heng An(安恒)5
1School of Nuclear Science & Technology, Xi’an Jiaotong University, Xi’an 710049, China 2National Innovation Center of Radiation Application, China Institute of Atomic Energy, Beijing 102413, China 3Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China 4Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino 10129, Italy 5Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
Single event effects (SEEs) in a 28-nm system-on-chip (SoC) were assessed using heavy ion irradiations, and susceptibilities in different processor configurations with data accessing patterns were investigated. The patterns included the sole processor (SP) and asymmetric multiprocessing (AMP) patterns with static and dynamic data accessing. Single event upset (SEU) cross sections in static accessing can be more than twice as high as those of the dynamic accessing, and processor configuration pattern is not a critical factor for the SEU cross sections. Cross section interval of upset events was evaluated and the soft error rates in aerospace environment were predicted for the SoC. The tests also indicated that ultra-high linear energy transfer (LET) particle can cause exception currents in the 28-nm SoC, and some even are lower than the normal case.
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11575138, 11835006, 11690040, and 11690043), the Fund from Innovation Center of Radiation Application (Grant No. KFZC2019050321), the Fund from the Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics (Grant No. ZWK1804), and the Program of China Scholarships Council (Grant No. 201906280343).
Cite this article:
Wei-Tao Yang(杨卫涛), Yong-Hong Li(李永宏)†, Ya-Xin Guo(郭亚鑫), Hao-Yu Zhao(赵浩昱), Yang Li(李洋), Pei Li(李培), Chao-Hui He(贺朝会), Gang Guo(郭刚), Jie Liu(刘杰), Sheng-Sheng Yang(杨生胜), and Heng An(安恒) Investigation of single event effect in 28-nm system-on-chip with multi patterns 2020 Chin. Phys. B 29 108504
Facility
Ions
Energy/MeV
LET/MeV⋅cm2⋅mg−1
Range in silicon/μm
Cl
160
13.1
46.0
HI-13
Si
135
9.3
50.7
C
80
1.7
127.1
HIRFL
Ta
1697.4
78.3
99.3
Table 1.
The used ions in the heavy ion irradiation.
Fig. 1.
SEU cross sections in HI-13 irradiation.
LET/MeV⋅cm2⋅mg−1
CPU pattern
Data test
SEU
SEFI
13.1
AMP
Static
504
44
SP
Dynamic
175
33
9.3
AMP
Static
252
38
SP
Dynamic
124
26
1.7
AMP
Static
91
7
SP
Dynamic
40
4
Table 2.
The detected errors in the HI-13 irradiation.
Fig. 2.
SEFI cross sections in the HI-13 irradiation.
CPU pattern
Data test
Fluence/cm−2
AMP
Dynamic
2.1 × 105
SP
Static
3.0 × 105
Dynamic
2.5 × 105
Table 3.
The parameters of the tests in HIRFL irradiation.
CPU pattern
Data test
SEU
SEFI
AMP
Dynamic
284
47
SP
Static
1277
33
Dynamic
254
41
Table 4.
The detected SEE in HIRFL irradiation.
Fig. 3.
The detected upset cells in the HIRFL irradiation.
Fig. 4.
The cross sections of the tests in HIRFL irradiation.
Fig. 5.
The detected currents in the HIRFL irradiation, (a) the currents are higher than the normal case, (b) a part of the currents are less than the normal case.
LET/MeV⋅cm2⋅mg−1
13.1
9.3
1.7
Cross section ratio (static/dynamic)
2.88
2.03
2.28
Table 5.
The cross sections ratio between static and dynamic tests in HI-13 irradiation.
Fig. 6.
The Weibull fitting from the irradiation tests.
σsat/cm2⋅bit−1
Lth/MeV⋅cm2⋅mg−1
W
S
Static cross section fitting
1.9 × 10−8
0.55
35
1.98
Dynamic cross section fitting
3.7 × 10−9
0.55
29
1.87
Table 6.
The Weibull function parameters for both fittings.
Bit error/bit−1⋅day−1
Device error/device−1⋅day−1
Static
2.46 × 10−8
5.16 × 10−2
Dynamic
1.35 × 10−8
2.83 × 10−2
Table 7.
The predicted SoC orbit soft error rate.
Fig. 7.
SEFI cross section of different tests in HIRFL irradiation.
[1]
Selma S, Rolf E, Sascha U, Henrik T, Benoît D D D 2015 International Conference on Hardware/Software Codesign and System Synthesis October 4–9, 2015 Amsterdam, Netherlands DOI: 10.1109/CODESISSS.2015.7331385
[2]
Massimo V, Cristina M, Ricardo R, Matteo S R 2011 IEEE Trans. Ind. Electron. 58 2617 DOI: 10.1109/TIE.2011.2134054
Luo J, Liu J, Sun Y M, Hou M D, Xi K, Liu T Q, Wang B, Ye B 2017 Nucl. Instrum. Methods Phys. Res. B 406 431 DOI: 10.1016/j.nimb.2017.04.038
[9]
Juan A C, Guillaume H, Francisco J F, Francesca V, Maud B, Hortensia M, Helmut P, Raoul V 2017 IEEE Trans. Nucl. Sci. 64 2188 DOI: 10.1109/TNS.2017.2682984
Jin X M, Chen W, Li J L, Qi C, Guo X Q, Li R B, Liu Y 2019 Chin. Phys. B 28 104212 DOI: 10.1088/1674-1056/ab4175
[13]
Xabier I, Didier K, Patrick Y, Daniel B, Robert C, Kevin H, Emre O 2015 23th IFIP/IEEE International Conference on Very Large Scale Integration - System on a Chip (VLSI-SoC) October 5–7, 2015 Daejeon, Korea DOI: 10.1007/978-3-319-46097-0_1
[14]
Chen X Y, Gu Y, Wang C X, Guan X G 2016 International Conference on Field-Programmable Technology (FPT) December 7–9, 2016 Xi’an, China DOI: 10.1109/FPT.2016.7929570
Lucas A T, Paolo R, Eduardo C, Jorge T, Fernanda L K 2016 IEEE Trans. Nucl. Sci. 63 2217 DOI: 10.1109/TNS.2016.2522508
[17]
Greg A, Farokh I, Mehran A 2015 NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop (ETW) June 23–26, 2015 Greenbelt, USA
[18]
Lucas A T, Fernanda L K, Nilberto H M, Nemitala A, Vitor A P A, Fernando A, Eduardo L A M, Marcilei A G S 2015 IEEE Radiation Effects Data Workshop (REDW) July 13–17, 2015 Boston, MA, USA DOI: 10.1109/REDW.2015.7336716
[19]
Mehran A, Farokh I, Steven M G, Greg A 2015 IEEE Radiation Effects Data Workshop (REDW) July 13–17, 2015 Boston, MA, USA DOI: 10.1109/REDW.2015.7336714
[20]
Du X C, He C H, Liu S H, Zhang Y, Li Y H, Yang W T 2017 J. Nucl. Sci. Technol. 54 287 DOI: 10.1080/00223131.2016.1262294
[21]
Yang W T, Du X C, He C H, Shi S T, Cai L, Hui N, Guo G, Huang C L 2018 IEEE Trans. Nucl. Sci. 65 545 DOI: 10.1109/TNS.2017.2776244
[22]
Yang W T, Du X C, Guo J L, Wei J Z, Du G H, He C H, Liu W J, Shen S S, Huang C L, Li Y H, Fan Y Y 2019 Nucl. Instrum. Methods Phys. Res. B 450 323 DOI: 10.1016/j.nimb.2018.09.038
[23]
Yang W T, Li Y H, Li Y, Hu Z L, Xie F, He C H, Wang S L, Zhou B, H. He H, Waseem K, Liang T J 2019 Microelectron. Reliab. 99 119 DOI: 10.1016/j.microrel.2019.05.004
[24]
Ádria B D O, Gennaro S R, Fernanda L K 2017 30th Symposium on Integrated Circuits and Systems Design August 28–September 1, 2017 Fortaleza, Brazil DOI: 10.1145/3109984.3110008
[25]
Adria B D O, Gennaro S R, Fernanda L K, Nemitala A, Eduardo L A M, Vitor A P A, Nilberto H M, Marcilei A G S 2018 IEEE Trans. Nucl. Sci. 65 1783 DOI: 10.1109/TNS.23
[26]
Xilinx, Inc. 2015 Zynq-7010 All Programmable SoC Overview, DS190(v1.8).
[27]
Xilinx, Inc. 2015 Zynq-7000 All Programmable SoC Technical Reference Manual, UG585 (v1.10)
[28]
SRIM (2013). Particle Interactions with Matter [Online]. Available: http://www.srim.org/
Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150 DOI: 10.1109/23.659030
[32]
Chen R, Han J W, Zheng H S, Yu Y T, Shangguan S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103 DOI: 10.1088/1674-1056/24/4/046103
[33]
David S L, Michael W, Gary S, Anthony C L 2014 IEEE Radiation Effects Data Workshop (REDW) July 14–18, 2014 Paris, France DOI: 10.1109/REDW.2014.7004595
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.