Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108504    DOI: 10.1088/1674-1056/ab99b8
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Investigation of single event effect in 28-nm system-on-chip with multi patterns

Wei-Tao Yang(杨卫涛)1,4, Yong-Hong Li(李永宏)1,†, Ya-Xin Guo(郭亚鑫)1, Hao-Yu Zhao(赵浩昱)1, Yang Li(李洋)1, Pei Li(李培)1, Chao-Hui He(贺朝会)1, Gang Guo(郭刚)2, Jie Liu(刘杰)3, Sheng-Sheng Yang(杨生胜)5, and Heng An(安恒)5
1 School of Nuclear Science & Technology, Xi’an Jiaotong University, Xi’an 710049, China
2 National Innovation Center of Radiation Application, China Institute of Atomic Energy, Beijing 102413, China
3 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
4 Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino 10129, Italy
5 Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
Abstract  

Single event effects (SEEs) in a 28-nm system-on-chip (SoC) were assessed using heavy ion irradiations, and susceptibilities in different processor configurations with data accessing patterns were investigated. The patterns included the sole processor (SP) and asymmetric multiprocessing (AMP) patterns with static and dynamic data accessing. Single event upset (SEU) cross sections in static accessing can be more than twice as high as those of the dynamic accessing, and processor configuration pattern is not a critical factor for the SEU cross sections. Cross section interval of upset events was evaluated and the soft error rates in aerospace environment were predicted for the SoC. The tests also indicated that ultra-high linear energy transfer (LET) particle can cause exception currents in the 28-nm SoC, and some even are lower than the normal case.

Keywords:  system-on-chip      heavy ion      single event effect  
Received:  07 May 2020      Revised:  19 May 2020      Accepted manuscript online:  05 June 2020
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  21.60.Ka (Monte Carlo models)  
Corresponding Authors:  Corresponding author. E-mail: yonghongli@mail.xjtu.edu.cn   
About author: 
†Corresponding author. E-mail: yonghongli@mail.xjtu.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11575138, 11835006, 11690040, and 11690043), the Fund from Innovation Center of Radiation Application (Grant No. KFZC2019050321), the Fund from the Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics (Grant No. ZWK1804), and the Program of China Scholarships Council (Grant No. 201906280343).

Cite this article: 

Wei-Tao Yang(杨卫涛), Yong-Hong Li(李永宏)†, Ya-Xin Guo(郭亚鑫), Hao-Yu Zhao(赵浩昱), Yang Li(李洋), Pei Li(李培), Chao-Hui He(贺朝会), Gang Guo(郭刚), Jie Liu(刘杰), Sheng-Sheng Yang(杨生胜), and Heng An(安恒) Investigation of single event effect in 28-nm system-on-chip with multi patterns 2020 Chin. Phys. B 29 108504

Facility Ions Energy/MeV LET/MeV⋅cm2⋅mg−1 Range in silicon/μm
Cl 160 13.1 46.0
HI-13 Si 135 9.3 50.7
C 80 1.7 127.1
HIRFL Ta 1697.4 78.3 99.3
Table 1.  

The used ions in the heavy ion irradiation.

Fig. 1.  

SEU cross sections in HI-13 irradiation.

LET/MeV⋅cm2⋅mg−1 CPU pattern Data test SEU SEFI
13.1 AMP Static 504 44
SP Dynamic 175 33
9.3 AMP Static 252 38
SP Dynamic 124 26
1.7 AMP Static 91 7
SP Dynamic 40 4
Table 2.  

The detected errors in the HI-13 irradiation.

Fig. 2.  

SEFI cross sections in the HI-13 irradiation.

CPU pattern Data test Fluence/cm−2
AMP Dynamic 2.1 × 105
SP Static 3.0 × 105
Dynamic 2.5 × 105
Table 3.  

The parameters of the tests in HIRFL irradiation.

CPU pattern Data test SEU SEFI
AMP Dynamic 284 47
SP Static 1277 33
Dynamic 254 41
Table 4.  

The detected SEE in HIRFL irradiation.

Fig. 3.  

The detected upset cells in the HIRFL irradiation.

Fig. 4.  

The cross sections of the tests in HIRFL irradiation.

Fig. 5.  

The detected currents in the HIRFL irradiation, (a) the currents are higher than the normal case, (b) a part of the currents are less than the normal case.

LET/MeV⋅cm2⋅mg−1 13.1 9.3 1.7
Cross section ratio (static/dynamic) 2.88 2.03 2.28
Table 5.  

The cross sections ratio between static and dynamic tests in HI-13 irradiation.

Fig. 6.  

The Weibull fitting from the irradiation tests.

σsat/cm2⋅bit−1 Lth/MeV⋅cm2⋅mg−1 W S
Static cross section fitting 1.9 × 10−8 0.55 35 1.98
Dynamic cross section fitting 3.7 × 10−9 0.55 29 1.87
Table 6.  

The Weibull function parameters for both fittings.

Bit error/bit−1⋅day−1 Device error/device−1⋅day−1
Static 2.46 × 10−8 5.16 × 10−2
Dynamic 1.35 × 10−8 2.83 × 10−2
Table 7.  

The predicted SoC orbit soft error rate.

Fig. 7.  

SEFI cross section of different tests in HIRFL irradiation.

[1]
Selma S, Rolf E, Sascha U, Henrik T, Benoît D D D 2015 International Conference on Hardware/Software Codesign and System Synthesis October 4–9, 2015 Amsterdam, Netherlands DOI: 10.1109/CODESISSS.2015.7331385
[2]
Massimo V, Cristina M, Ricardo R, Matteo S R 2011 IEEE Trans. Ind. Electron. 58 2617 DOI: 10.1109/TIE.2011.2134054
[3]
Daniel M F, Peter S W, Paul E D 2000 Microelectron. Reliab. 40 17 DOI: 10.1016/S0026-2714(99)00225-5
[4]
Bi J S, Xi K, Li B, Wang H B, Ji L L, Li J, Liu M 2018 Chin. Phys. B 27 098501 DOI: 10.1088/1674-1056/27/9/098501
[5]
Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull. 62 978 DOI: 10.1360/N972016-00438
[6]
Sexton F W 2003 IEEE Trans. Nucl. Sci. 50 603 DOI: 10.1109/TNS.2003.813137
[7]
Bi J S, Zeng C B, Gao L C, Liu G, Luo J J, Han Z S 2014 Chin. Phys. B 23 088505 DOI: 10.1088/1674-1056/23/8/088505
[8]
Luo J, Liu J, Sun Y M, Hou M D, Xi K, Liu T Q, Wang B, Ye B 2017 Nucl. Instrum. Methods Phys. Res. B 406 431 DOI: 10.1016/j.nimb.2017.04.038
[9]
Juan A C, Guillaume H, Francisco J F, Francesca V, Maud B, Hortensia M, Helmut P, Raoul V 2017 IEEE Trans. Nucl. Sci. 64 2188 DOI: 10.1109/TNS.2017.2682984
[10]
Pan X Y, Guo H X, Luo Y H, Zhang F Q, Ding L L 2018 Chin. Phys. B 27 038501 DOI: 10.1088/1674-1056/27/3/038501
[11]
Zhang K Y, Zhang F Q, Luo Y H, Guo H X 2013 Chin. Phys. B 23 028501 DOI: 10.1088/1674-1056/23/2/028501
[12]
Jin X M, Chen W, Li J L, Qi C, Guo X Q, Li R B, Liu Y 2019 Chin. Phys. B 28 104212 DOI: 10.1088/1674-1056/ab4175
[13]
Xabier I, Didier K, Patrick Y, Daniel B, Robert C, Kevin H, Emre O 2015 23th IFIP/IEEE International Conference on Very Large Scale Integration - System on a Chip (VLSI-SoC) October 5–7, 2015 Daejeon, Korea DOI: 10.1007/978-3-319-46097-0_1
[14]
Chen X Y, Gu Y, Wang C X, Guan X G 2016 International Conference on Field-Programmable Technology (FPT) December 7–9, 2016 Xi’an, China DOI: 10.1109/FPT.2016.7929570
[15]
ARM. 2017 Application Note Cortex-M33 Dual Core Lockstep
[16]
Lucas A T, Paolo R, Eduardo C, Jorge T, Fernanda L K 2016 IEEE Trans. Nucl. Sci. 63 2217 DOI: 10.1109/TNS.2016.2522508
[17]
Greg A, Farokh I, Mehran A 2015 NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop (ETW) June 23–26, 2015 Greenbelt, USA
[18]
Lucas A T, Fernanda L K, Nilberto H M, Nemitala A, Vitor A P A, Fernando A, Eduardo L A M, Marcilei A G S 2015 IEEE Radiation Effects Data Workshop (REDW) July 13–17, 2015 Boston, MA, USA DOI: 10.1109/REDW.2015.7336716
[19]
Mehran A, Farokh I, Steven M G, Greg A 2015 IEEE Radiation Effects Data Workshop (REDW) July 13–17, 2015 Boston, MA, USA DOI: 10.1109/REDW.2015.7336714
[20]
Du X C, He C H, Liu S H, Zhang Y, Li Y H, Yang W T 2017 J. Nucl. Sci. Technol. 54 287 DOI: 10.1080/00223131.2016.1262294
[21]
Yang W T, Du X C, He C H, Shi S T, Cai L, Hui N, Guo G, Huang C L 2018 IEEE Trans. Nucl. Sci. 65 545 DOI: 10.1109/TNS.2017.2776244
[22]
Yang W T, Du X C, Guo J L, Wei J Z, Du G H, He C H, Liu W J, Shen S S, Huang C L, Li Y H, Fan Y Y 2019 Nucl. Instrum. Methods Phys. Res. B 450 323 DOI: 10.1016/j.nimb.2018.09.038
[23]
Yang W T, Li Y H, Li Y, Hu Z L, Xie F, He C H, Wang S L, Zhou B, H. He H, Waseem K, Liang T J 2019 Microelectron. Reliab. 99 119 DOI: 10.1016/j.microrel.2019.05.004
[24]
Ádria B D O, Gennaro S R, Fernanda L K 2017 30th Symposium on Integrated Circuits and Systems Design August 28–September 1, 2017 Fortaleza, Brazil DOI: 10.1145/3109984.3110008
[25]
Adria B D O, Gennaro S R, Fernanda L K, Nemitala A, Eduardo L A M, Vitor A P A, Nilberto H M, Marcilei A G S 2018 IEEE Trans. Nucl. Sci. 65 1783 DOI: 10.1109/TNS.23
[26]
Xilinx, Inc. 2015 Zynq-7010 All Programmable SoC Overview, DS190(v1.8).
[27]
Xilinx, Inc. 2015 Zynq-7000 All Programmable SoC Technical Reference Manual, UG585 (v1.10)
[28]
SRIM (2013). Particle Interactions with Matter [Online]. Available: http://www.srim.org/
[29]
Petersen E L 2008 IEEE Trans. Nucl. Sci. 55 2819 DOI: 10.1109/TNS.2008.2007903
[30]
[31]
Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150 DOI: 10.1109/23.659030
[32]
Chen R, Han J W, Zheng H S, Yu Y T, Shangguan S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103 DOI: 10.1088/1674-1056/24/4/046103
[33]
David S L, Michael W, Gary S, Anthony C L 2014 IEEE Radiation Effects Data Workshop (REDW) July 14–18, 2014 Paris, France DOI: 10.1109/REDW.2014.7004595
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[3] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[4] Research on SEE mitigation techniques using back junction and p+ buffer layer in domestic non-DTI SiGe HBTs by TCAD
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏). Chin. Phys. B, 2019, 28(6): 068503.
[5] Vibrational modes in La2Zr2O7 pyrochlore irradiated with disparate electrical energy losses
Sheng-Xia Zhang(张胜霞), Jie Liu(刘杰), Hua Xie(谢华), Li-Jun Xu(徐丽君), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Wen-Si Ai(艾文思), Peng-Fei Zhai(翟鹏飞). Chin. Phys. B, 2019, 28(11): 116102.
[6] Heavy ion induced upset errors in 90-nm 64 Mb NOR-type floating-gate Flash memory
Jin-Shun Bi(毕津顺), Kai Xi(习凯), Bo Li(李博), Hai-Bin Wang(王海滨), Lan-Long Ji(季兰龙), Jin Li(李金), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 098501.
[7] Influences of total ionizing dose on single event effect sensitivity in floating gate cells
Ya-Nan Yin(殷亚楠), Jie Liu(刘杰), Qing-Gang Ji(姬庆刚), Pei-Xiong Zhao(赵培雄), Tian-Qi Liu(刘天奇), Bing Ye(叶兵), Jie Luo(罗捷), You-Mei Sun(孙友梅), Ming-Dong Hou(侯明东). Chin. Phys. B, 2018, 27(8): 086103.
[8] Investigation of flux dependent sensitivity on single event effect in memory devices
Jie Luo(罗捷), Tie-shan Wang(王铁山), Dong-qing Li(李东青), Tian-qi Liu(刘天奇), Ming-dong Hou(侯明东), You-mei Sun(孙友梅), Jing-lai Duan(段敬来), Hui-jun Yao(姚会军), Kai Xi(习凯), Bing Ye(叶兵), Jie Liu(刘杰). Chin. Phys. B, 2018, 27(7): 076101.
[9] Mechanisms of atmospheric neutron-induced single event upsets in nanometric SOI and bulk SRAM devices based on experiment-verified simulation tool
Zhi-Feng Lei(雷志锋), Zhan-Gang Zhang(张战刚), Yun-Fei En(恩云飞), Yun Huang(黄云). Chin. Phys. B, 2018, 27(6): 066105.
[10] Synergistic effect of total ionizing dose on single event effect induced by pulsed laser microbeam on SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Qi Guo(郭旗), Feng-Qi Zhang(张凤祁), Juan Feng(冯娟), Xin Wang(王信), Yin Wei(魏莹), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2018, 27(10): 108501.
[11] Three-dimensional simulation of fabrication process-dependent effects on single event effects of SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Pei Li(李培), Bao-Long Guo(郭宝龙), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2017, 26(8): 088502.
[12] Structural modification in swift heavy ion irradiated muscovite mica
Sheng-Xia Zhang(张胜霞), Jie Liu(刘杰), Jian Zeng(曾健), Pei-Pei Hu(胡培培), Peng-Fei Zhai(翟鹏飞). Chin. Phys. B, 2017, 26(10): 106102.
[13] X-ray emission from 424-MeV/u C ions impacting on selected target
Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Lei(雷瑜), Yuan-Bo Sun(孙渊博), Yu-Yu Wang(王瑜玉), Xing Wang(王兴), Ge Xu(徐戈), Ce-Xiang Mei(梅策香), Xiao-An Zhang(张小安), Xi-Meng Chen(陈熙萌), Guo-Qing Xiao(肖国青), Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2016, 25(2): 023402.
[14] Single-event response of the SiGe HBT in TCAD simulations and laser microbeam experiment
Li Pei (李培), Guo Hong-Xia (郭红霞), Guo Qi (郭旗), Zhang Jin-Xin (张晋新), Xiao Yao (肖尧), Wei Ying (魏莹), Cui Jiang-Wei (崔江维), Wen Lin (文林), Liu Mo-Han (刘默寒), Wang Xin (王信). Chin. Phys. B, 2015, 24(8): 088502.
[15] Irradiation effects of graphene and thin layer graphite induced by swift heavy ions
Zeng Jian (曾健), Liu Jie (刘杰), Zhang Sheng-Xia (张胜霞), Zhai Peng-Fei (翟鹏飞), Yao Hui-Jun (姚会军), Duan Jing-Lai (段敬来), Guo Hang (郭航), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅). Chin. Phys. B, 2015, 24(8): 086103.
No Suggested Reading articles found!