CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2 |
Long Lin(林龙)1, Yi-Peng Guo(郭义鹏)1, Chao-Zheng He(何朝政)2, Hua-Long Tao(陶华龙)3, Jing-Tao Huang(黄敬涛)1, Wei-Yang Yu(余伟阳)4, Rui-Xin Chen(陈瑞欣)1, Meng-Si Lou(娄梦思)1, Long-Bin Yan(闫龙斌)1 |
1 Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; 2 Institute of Environmental and Energy Catalysis, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China; 3 Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China; 4 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China |
|
|
Abstract The electronic structures and magnetic properties of diverse transition metal (TM=Fe, Co, and Ni) and nitrogen (N) co-doped monolayer MoS2 are investigated by using density functional theory. The results show that the intrinsic MoS2 does not have magnetism initially, but doped with TM (TM=Fe, Co, and Ni) the MoS2 possesses an obvious magnetism distinctly. The magnetic moment mainly comes from unpaired Mo:4d orbitals and the d orbitals of the dopants, as well as the S:3p states. However, the doping system exhibits certain half-metallic properties, so we select N atoms in the V family as a dopant to adjust its half-metal characteristics. The results show that the (Fe, N) co-doped MoS2 can be a satisfactory material for applications in spintronic devices. On this basis, the most stable geometry of the (2Fe-N) co-doped MoS2 system is determined by considering the different configurations of the positions of the two Fe atoms. It is found that the ferromagnetic mechanism of the (2Fe-N) co-doped MoS2 system is caused by the bond spin polarization mechanism of the Fe-Mo-Fe coupling chain. Our results verify that the (Fe, N) co-doped single-layer MoS2 has the conditions required to become a dilute magnetic semiconductor.
|
Received: 12 April 2020
Revised: 14 May 2020
Accepted manuscript online: 28 May 2020
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the Key Project of the National Natural Science Foundation of China (Grant No. 51702089), the National Natural Science Foundation of China (Grant Nos. 21603109 and 11804081), the Henan Joint Fund of the National Natural Science Foundation of China (Grant No. U1404216), China Postdoctoral Science Foundation (Grant No. 2019M652425), the One Thousand Talent Plan of Shaanxi Province, China, the Natural Science Foundation of Henan Province, China (Grant Nos. 182102210305 and 19B430003), the Key Research Project for the Universities of Henan Province, China (Grant No. 19A140009), the Doctoral Foundation of Henan Polytechnic University, China (Grant No. B2018-38), the Open Project of Key Laboratory of Radio Frequency and Micro-Nano, and the Fund from the Electronics of Jiangsu Province, China (Grant No. LRME201601). |
Corresponding Authors:
Chao-Zheng He
E-mail: hecz2019@xatu.edu.cn
|
Cite this article:
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌) First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2 2020 Chin. Phys. B 29 097102
|
[1] |
Castro Neto A H, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[2] |
Lucking M C, Xie W Y, Choe D H, West D, Lu T M and Zhang S B 2018 Phys. Rev. Lett. 120 086101
|
[3] |
Lu J P, Yang J, Carvalho A, Liu H, Lu Y R and Sow C H 2016 Acc. Chem. Res. 49 1806
|
[4] |
Li Y G, Li Y L, Sa B S and Ahuja R 2017 Catal. Sci. Technol. 7 545
|
[5] |
Feng Y P, Shen L, Yang M, Wang A Z, Zeng M G, Wu Q Y, Chintalapati S and Chang C R 2017 WIREs. Comput. Mol. Sci. 7 e1313
|
[6] |
Kime G, Leontiadou M A, Brent J, Savjani N, O'Brien P and Binks D J 2017 J. Phys. Chem. C 121 22415
|
[7] |
Wen M, Xu J P, Liu L, Lai P T and Tang W M 2017 IEEE Trans. Electron Dev. 99 1
|
[8] |
Liu L, Wang X D, Han L, Tian B B, Chen Y, Wu G J, Li D, Yan M G, Wang T, Sun S, Shen H, Lin T, Sun J, Duan C, Wang J L, Meng X J and Chu J H 2017 AIP Adv. 7 065121
|
[9] |
Benavente E, Durán F, Sotomayor-Torres C and González G 2018 J. Phys. Chem. Solids 113 119
|
[10] |
Niefind F, Djamil J, Bensch W, Srinivasan B R, Sinev I, Grünert W, Deng M, Kienle L, Lotnyk A, Mesch M B, Senker J, Durag L and Beweries T 2015 RSC Adv. 5 67742
|
[11] |
Cho B, Hahm M G, Choi M, Yoon J, Kim A R, Lee Y J, Park S G, Kwon J D, Kim C S, Song M, Jeong Y, Nam K S, Lee S, Yoo T J, Kang C G, Lee B H, Ko H C, Ajayan P M and Kim D H 2015 Sci. Rep. 5 8052
|
[12] |
Li Y, Cai C, Gu Y, Cheng W, Xiong W and Zhao C 2017 Appl. Surf. Sci. 414 34
|
[13] |
Xie Y, Zhang B, Wang S, Wang D, Wang A, Wang Z, Yu H, Zhang H, Chen Y, Zhao M, Huang B, Mei L and Wang J 2017 Adv. Mater. 29 1605972
|
[14] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[15] |
Komsa H P, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2013 Phys. Rev. B 88 1
|
[16] |
Suh J, Tan T L, Zhao W, Park J, Lin D Y, Park T E, Kim J, Jin C, Saigal N, Ghosh S, Wong Z M, Chen Y, Wang F, Walukiewicz W, Eda G and Wu J 2018 Nat. Commun. 9 1
|
[17] |
Fan Y H, Zhang J Y, Qiu Y Z, Zhu J, Zhang Y F and Hu G L 2017 Comput. Mater. Sci. 138 255
|
[18] |
Zhang L Q, Liu T M, Li T F and Hussain S 2017 Physica E 94 47
|
[19] |
Ramasubramaniam A and Naveh D 2013 Phys. Rev. B 87 1
|
[20] |
Zhao H M 2016 Joint International Information Technology, Mechanical and Electronic Engineering Conference, October 4-5, 2016, Xi'an, China, p. 530
|
[21] |
Cui H, Zhang X, Zhang G and Tang J 2019 Appl. Surf. Sci. 470 1035
|
[22] |
Cheriyan S, Balamurgan D and Sriram S 2018 Superlattices Microstruct. 116 238
|
[23] |
Garandel T, Arras R, Marie X, Renucci P and Calmels L 2017 Phys. Rev. B 95 1
|
[24] |
Cheng Y C, Zhu Z Y, Mi W B, Guo Z B and Schwingenschlgl U 2013 Phys. Rev. B 87 100401(R)
|
[25] |
Yue Q, Chang S, Qin S and Li J 2013 Phys. Lett. A 377 1362
|
[26] |
Lu S C and Leburton J P 2014 Nanoscale Res. Lett. 9 676
|
[27] |
Yiren W, Li-Ting Tseng, Peter P, Murmu, Nina Bao and John 2017 Mater. Des. 121 77
|
[28] |
Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2012 Phys. Rev. Lett. 109 35503
|
[29] |
Dai Z, Jin W, Grady M, Sadowski J T, Dadap J I, Osgood R M and Pohl K 2017 Surf. Sci. 660 16
|
[30] |
Wu P, Yin N, Li P, Cheng W and Huang M 2017 Phys. Chem. Chem. Phys. 19 20713
|
[31] |
Lin L, Huang J, Yu W, Zhu L, Tao H, Wang P and Guo Y P 2019 Solid State Commun. 301 113702
|
[32] |
Guan L, Tan F X, Jia G Q, Shen G M, Liu B T and Li X 2016 Chin. Phys. Lett. 33 087301
|
[33] |
Dai X, Le C C, Wu X X, Qin S S, Lin Z P and Hu J P 2016 Chin. Phys. Lett. 33 127301
|
[34] |
Hu Y J, Xu S L, Wang H, Liu H, Xu X C and Cai Y X 2016 Chin. Phys. Lett. 33 106102
|
[35] |
Gu Y H, Feng Q, Chen J J, Li Y H and Cai C Z 2016 Chin. Phys. Lett. 33 077102
|
[36] |
Sun J P, Zhang D and Chang K 2017 Chin. Phys. Lett. 34 027102
|
[37] |
Liu P, Wang W H, Wang W C, Cheng Y H, Lu F and Liu H 2017 Chin. Phys. Lett. 34 027101
|
[38] |
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[39] |
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
|
[40] |
Hu A M, Wang L L, Xiao W Z, Xiao G and Rong Q Y 2015 Comput. Mater. Sci. 107 72
|
[41] |
Jia C, Zhou B, Song Q, Zhang X and Jiang Z 2018 RSC Adv. 8 18837
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|