Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097102    DOI: 10.1088/1674-1056/ab9741
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2

Long Lin(林龙)1, Yi-Peng Guo(郭义鹏)1, Chao-Zheng He(何朝政)2, Hua-Long Tao(陶华龙)3, Jing-Tao Huang(黄敬涛)1, Wei-Yang Yu(余伟阳)4, Rui-Xin Chen(陈瑞欣)1, Meng-Si Lou(娄梦思)1, Long-Bin Yan(闫龙斌)1
1 Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2 Institute of Environmental and Energy Catalysis, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China;
3 Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China;
4 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
Abstract  The electronic structures and magnetic properties of diverse transition metal (TM=Fe, Co, and Ni) and nitrogen (N) co-doped monolayer MoS2 are investigated by using density functional theory. The results show that the intrinsic MoS2 does not have magnetism initially, but doped with TM (TM=Fe, Co, and Ni) the MoS2 possesses an obvious magnetism distinctly. The magnetic moment mainly comes from unpaired Mo:4d orbitals and the d orbitals of the dopants, as well as the S:3p states. However, the doping system exhibits certain half-metallic properties, so we select N atoms in the V family as a dopant to adjust its half-metal characteristics. The results show that the (Fe, N) co-doped MoS2 can be a satisfactory material for applications in spintronic devices. On this basis, the most stable geometry of the (2Fe-N) co-doped MoS2 system is determined by considering the different configurations of the positions of the two Fe atoms. It is found that the ferromagnetic mechanism of the (2Fe-N) co-doped MoS2 system is caused by the bond spin polarization mechanism of the Fe-Mo-Fe coupling chain. Our results verify that the (Fe, N) co-doped single-layer MoS2 has the conditions required to become a dilute magnetic semiconductor.
Keywords:  MoS2      first principle calculations      diluted magnetic semiconductors      magnetic property  
Received:  12 April 2020      Revised:  14 May 2020      Accepted manuscript online:  28 May 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the Key Project of the National Natural Science Foundation of China (Grant No. 51702089), the National Natural Science Foundation of China (Grant Nos. 21603109 and 11804081), the Henan Joint Fund of the National Natural Science Foundation of China (Grant No. U1404216), China Postdoctoral Science Foundation (Grant No. 2019M652425), the One Thousand Talent Plan of Shaanxi Province, China, the Natural Science Foundation of Henan Province, China (Grant Nos. 182102210305 and 19B430003), the Key Research Project for the Universities of Henan Province, China (Grant No. 19A140009), the Doctoral Foundation of Henan Polytechnic University, China (Grant No. B2018-38), the Open Project of Key Laboratory of Radio Frequency and Micro-Nano, and the Fund from the Electronics of Jiangsu Province, China (Grant No. LRME201601).
Corresponding Authors:  Chao-Zheng He     E-mail:  hecz2019@xatu.edu.cn

Cite this article: 

Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌) First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2 2020 Chin. Phys. B 29 097102

[1] Castro Neto A H, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Lucking M C, Xie W Y, Choe D H, West D, Lu T M and Zhang S B 2018 Phys. Rev. Lett. 120 086101
[3] Lu J P, Yang J, Carvalho A, Liu H, Lu Y R and Sow C H 2016 Acc. Chem. Res. 49 1806
[4] Li Y G, Li Y L, Sa B S and Ahuja R 2017 Catal. Sci. Technol. 7 545
[5] Feng Y P, Shen L, Yang M, Wang A Z, Zeng M G, Wu Q Y, Chintalapati S and Chang C R 2017 WIREs. Comput. Mol. Sci. 7 e1313
[6] Kime G, Leontiadou M A, Brent J, Savjani N, O'Brien P and Binks D J 2017 J. Phys. Chem. C 121 22415
[7] Wen M, Xu J P, Liu L, Lai P T and Tang W M 2017 IEEE Trans. Electron Dev. 99 1
[8] Liu L, Wang X D, Han L, Tian B B, Chen Y, Wu G J, Li D, Yan M G, Wang T, Sun S, Shen H, Lin T, Sun J, Duan C, Wang J L, Meng X J and Chu J H 2017 AIP Adv. 7 065121
[9] Benavente E, Durán F, Sotomayor-Torres C and González G 2018 J. Phys. Chem. Solids 113 119
[10] Niefind F, Djamil J, Bensch W, Srinivasan B R, Sinev I, Grünert W, Deng M, Kienle L, Lotnyk A, Mesch M B, Senker J, Durag L and Beweries T 2015 RSC Adv. 5 67742
[11] Cho B, Hahm M G, Choi M, Yoon J, Kim A R, Lee Y J, Park S G, Kwon J D, Kim C S, Song M, Jeong Y, Nam K S, Lee S, Yoo T J, Kang C G, Lee B H, Ko H C, Ajayan P M and Kim D H 2015 Sci. Rep. 5 8052
[12] Li Y, Cai C, Gu Y, Cheng W, Xiong W and Zhao C 2017 Appl. Surf. Sci. 414 34
[13] Xie Y, Zhang B, Wang S, Wang D, Wang A, Wang Z, Yu H, Zhang H, Chen Y, Zhao M, Huang B, Mei L and Wang J 2017 Adv. Mater. 29 1605972
[14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[15] Komsa H P, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2013 Phys. Rev. B 88 1
[16] Suh J, Tan T L, Zhao W, Park J, Lin D Y, Park T E, Kim J, Jin C, Saigal N, Ghosh S, Wong Z M, Chen Y, Wang F, Walukiewicz W, Eda G and Wu J 2018 Nat. Commun. 9 1
[17] Fan Y H, Zhang J Y, Qiu Y Z, Zhu J, Zhang Y F and Hu G L 2017 Comput. Mater. Sci. 138 255
[18] Zhang L Q, Liu T M, Li T F and Hussain S 2017 Physica E 94 47
[19] Ramasubramaniam A and Naveh D 2013 Phys. Rev. B 87 1
[20] Zhao H M 2016 Joint International Information Technology, Mechanical and Electronic Engineering Conference, October 4-5, 2016, Xi'an, China, p. 530
[21] Cui H, Zhang X, Zhang G and Tang J 2019 Appl. Surf. Sci. 470 1035
[22] Cheriyan S, Balamurgan D and Sriram S 2018 Superlattices Microstruct. 116 238
[23] Garandel T, Arras R, Marie X, Renucci P and Calmels L 2017 Phys. Rev. B 95 1
[24] Cheng Y C, Zhu Z Y, Mi W B, Guo Z B and Schwingenschlgl U 2013 Phys. Rev. B 87 100401(R)
[25] Yue Q, Chang S, Qin S and Li J 2013 Phys. Lett. A 377 1362
[26] Lu S C and Leburton J P 2014 Nanoscale Res. Lett. 9 676
[27] Yiren W, Li-Ting Tseng, Peter P, Murmu, Nina Bao and John 2017 Mater. Des. 121 77
[28] Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2012 Phys. Rev. Lett. 109 35503
[29] Dai Z, Jin W, Grady M, Sadowski J T, Dadap J I, Osgood R M and Pohl K 2017 Surf. Sci. 660 16
[30] Wu P, Yin N, Li P, Cheng W and Huang M 2017 Phys. Chem. Chem. Phys. 19 20713
[31] Lin L, Huang J, Yu W, Zhu L, Tao H, Wang P and Guo Y P 2019 Solid State Commun. 301 113702
[32] Guan L, Tan F X, Jia G Q, Shen G M, Liu B T and Li X 2016 Chin. Phys. Lett. 33 087301
[33] Dai X, Le C C, Wu X X, Qin S S, Lin Z P and Hu J P 2016 Chin. Phys. Lett. 33 127301
[34] Hu Y J, Xu S L, Wang H, Liu H, Xu X C and Cai Y X 2016 Chin. Phys. Lett. 33 106102
[35] Gu Y H, Feng Q, Chen J J, Li Y H and Cai C Z 2016 Chin. Phys. Lett. 33 077102
[36] Sun J P, Zhang D and Chang K 2017 Chin. Phys. Lett. 34 027102
[37] Liu P, Wang W H, Wang W C, Cheng Y H, Lu F and Liu H 2017 Chin. Phys. Lett. 34 027101
[38] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[39] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[40] Hu A M, Wang L L, Xiao W Z, Xiao G and Rong Q Y 2015 Comput. Mater. Sci. 107 72
[41] Jia C, Zhou B, Song Q, Zhang X and Jiang Z 2018 RSC Adv. 8 18837
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[6] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[9] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[10] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[13] High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response
Wen Deng(邓文), Li-Sheng Wang(汪礼胜), Jia-Ning Liu(刘嘉宁), Tao Xiang(相韬), and Feng-Xiang Chen(陈凤翔). Chin. Phys. B, 2022, 31(12): 128502.
[14] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[15] Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林). Chin. Phys. B, 2022, 31(1): 014101.
No Suggested Reading articles found!