CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Two ultra-stable novel allotropes of tellurium few-layers |
Changlin Yan(严长林)1,2, Cong Wang(王聪)2, Linwei Zhou(周霖蔚)2, Pengjie Guo(郭朋杰)2, Kai Liu(刘凯)2, Zhong-Yi Lu(卢仲毅)2, Zhihai Cheng(程志海)2, Yang Chai(柴扬)3, Anlian Pan(潘安练)4, Wei Ji(季威)2 |
1 School of Physics and Electronics, Hunan University, Changsha 410082, China; 2 Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China; 3 The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; 4 Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China |
|
|
Abstract At least four two- or quasi-one-dimensional allotropes and a mixture of them were theoretically predicted or experimentally observed for low-dimensional Te, namely the α, β, γ, δ, and chiral-α +δ phases. Among them the γ and α phases were found to be the most stable phases for monolayer and thicker layers, respectively. Here, we found two novel low-dimensional phases, namely the ε and ζ phases. The ζ phase is over 29 meV/Te more stable than the most stable monolayer γ phase, and the ε phase shows comparable stability with the most stable monolayer γ phase. The energetic difference between the ζ and α phases reduces with respect to the increased layer thickness and vanishes at the four-layer (12-sublayer) thickness, while this thickness increases under change doping. Both ε and ζ phases are metallic chains and layers, respectively. The ζ phase, with very strong interlayer coupling, shows quantum well states in its layer-dependent bandstructures. These results provide significantly insight into the understanding of polytypism in Te few-layers and may boost tremendous studies on properties of various few-layer phases.
|
Received: 06 May 2020
Revised: 29 June 2020
Accepted manuscript online: 15 July 2020
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the Science Fund from the Ministry of Science and Technology (MOST) of China (Grant No. 2018YFE0202700), the National Natural Science Foundation of China (Grant Nos. 11274380, 91433103, 11622437, 61674171, 11974422, and 61761166009), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), the Fundamental Research Funds for the Central Universities of China and the Research Funds of Renmin University of China (Grant No. 16XNLQ01), the Research Grant No. Council of Hong Kong, China (Grant No. N_PolyU540/17), and the Hong Kong Polytechnic University (Grant No. G-SB53). Cong Wang was supported by the Outstanding Innovative Talents Cultivation Funded Programs 2017 of Renmin University of China. |
Corresponding Authors:
Wei Ji
E-mail: wji@ruc.edu.cn
|
Cite this article:
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威) Two ultra-stable novel allotropes of tellurium few-layers 2020 Chin. Phys. B 29 097103
|
[1] |
Balendhran S, Walia S, Nili H, Sriram S and Bhaskaran M 2015 Small 11 640
|
[2] |
Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S and Cooper V R 2015 ACS Nano 9 11509
|
[3] |
Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C and Akinwande D 2017 Nat. Mater. 16 163
|
[4] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[5] |
Geim A K and Novoselov K S 2010 Nanoscience and technology: a collection of reviews from nature journals (World Scientific) pp. 11-19
|
[6] |
Neto A C, Guinea F, Peres N M, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[7] |
Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
|
[8] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[9] |
Li G, Li Y, Liu H, Guo Y, Li Y and Zhu D 2010 Chem. Commun. 46 3256
|
[10] |
Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
|
[11] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[12] |
Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
|
[13] |
Dávila M, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002
|
[14] |
Tang P, Chen P, Cao W, Huang H, Cahangirov S, Xian L, Xu Y, Zhang S C, Duan W and Rubio A 2014 Phys. Rev. B 90 121408
|
[15] |
Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
|
[16] |
Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U and Guest J R 2015 Science 350 1513
|
[17] |
Mannix A J, Zhang Z, Guisinger N P, Yakobson B I and Hersam M C 2018 Nat. Nanotechnol. 13 444
|
[18] |
Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563
|
[19] |
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
|
[20] |
Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
|
[21] |
Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 1
|
[22] |
Wei Q and Peng X 2014 Appl. Phys. Lett. 104 251915
|
[23] |
Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723
|
[24] |
Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Ed. 54 3112
|
[25] |
Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W and Ni Z 2016 Nat. Commun. 7 13352
|
[26] |
Drozdov I K, Alexandradinata A, Jeon S, Nadj-Perge S, Ji H, Cava R J, Bernevig B A and Yazdani A 2014 Nat. Phys. 10 664
|
[27] |
Xia F, Mueller T, Lin Y-m, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
|
[28] |
Liu C H, Chang Y C, Norris T B and Zhong Z 2014 Nat. Nanotechnology 9 273
|
[29] |
Kong X K, Chen C L and Chen Q W 2014 Chem. Soc. Rev. 43 2841
|
[30] |
Deng H X, Song Z G, Li S S, Wei S H and Luo J W 2018 Chin. Phys. Lett. 35 057301
|
[31] |
Li H, Wang Z Y, Zheng X J, Liu Y and Zhong Y 2018 Chin. Phys. Lett. 35 127501
|
[32] |
Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L and Feng X 2019 Chin. Phys. Lett. 36 076801
|
[33] |
Jiang G, Feng Y, Wu W, Li S, Bai Y, Li Y, Zhang Q, Gu L, Feng X and Zhang D 2018 Chin. Phys. Lett. 35 076802
|
[34] |
Wu D, Mi Z, Li Y, Wu W, Li P, Song Y, Liu G, Li G and Luo J 2019 Chin. Phys. Lett. 36 077102
|
[35] |
Jia Y T, Zhao J F, Zhang S J, Yu S, Dai G Y, Li W M, Duan L, Zhao G Q, Wang X C and Zheng X 2019 Chin. Phys. Lett. 36 087401
|
[36] |
Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
|
[37] |
Liao M, Zang Y, Guan Z, Li H, Gong Y, Zhu K, Hu X P, Zhang D, Xu Y and Wang Y Y 2018 Nat. Phys. 14 344
|
[38] |
Kong X, Liu Q, Zhang C, Peng Z and Chen Q 2017 Chem. Soc. Rev. 46 2127
|
[39] |
Kim M S, Ma X H, Cho K H, Jeon S Y, Hur K and Sung Y M 2018 Adv. Mater. 30 1702701
|
[40] |
Yi S, Zhu Z, Cai X, Jia Y and Cho J H 2018 Inorg. Chem. 57 5083
|
[41] |
Du Y, Qiu G, Wang Y, Si M, Xu X, Wu W and Ye P D 2017 Nano Lett. 17 3965
|
[42] |
Huang X, Guan J, Lin Z, Liu B, Xing S, Wang W and Guo J 2017 Nano Lett. 17 4619
|
[43] |
Chen J, Dai Y, Ma Y, Dai X, Ho W and Xie M 2017 Nanoscale 9 15945
|
[44] |
Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y, Goddard W A, Kim M J and Xu X 2018 Nat. Electron. 1 228
|
[45] |
Zhu Z, Cai X, Yi S, Chen J, Dai Y, Niu C, Guo Z, Xie M, Liu F and Cho J H 2017 Phys. Rev. Lett. 119 106101
|
[46] |
Qiao J, Pan Y, Yang F, Wang C, Chai Y and Ji W 2018 Sci. Bull. 63 159
|
[47] |
Wang Y, Xiao C, Chen M, Hua C, Zou J, Wu C, Jiang J, Yang S A, Lu Y and Ji W 2018 Mater. Horizons 5 521
|
[48] |
Chao L, Bukhtiar A, Xi S, Kong P P, Wang W P, Zhao H F, Yao Y, Zou B S, Li Y C, Li X D, Liu J, Jin C Q and Yu R C 2015 Chin. Phys. B 24 036401
|
[49] |
Tia X Q, Du S X and Gao H J 2008 Chin. Phys. B 17 286
|
[50] |
Zhang W, Wu Q, Yazyev O V, Weng H, Guo Z, Cheng W D and Chai G L 2018 Phys. Rev. B 98 115411
|
[51] |
Zhou D W, Pu C Y, Dominik S, Zhang G F, Lu C, Li G Q and Song J F 2013 Chin. Phys. Lett. 30 027401
|
[52] |
Wang C, Zhou X, Qiao J, Zhou L, Kong X, Pan Y, Cheng Z, Chai Y and Ji W 2018 Nanoscale 10 22263
|
[53] |
Qiao J, Zhou L and Ji W 2017 Chin. Phys. B 26 036803
|
[54] |
Hu Z X, Kong X, Qiao J, Normand B and Ji W 2016 Nanoscale 8 2740
|
[55] |
Jia Q, Kong X, Qiao J and Ji W 2016 Sci. China-Phys. Mech. Astron. 59 696811
|
[56] |
Du Y, Zhuang J, Wang J, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L and Wu K 2016 Sci. Adv. 2 e1600067
|
[57] |
Arafune R, Lin C L, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2013 Surf. Sci. 608 297
|
[58] |
Shuai Z 2020 Chin. Phys. Lett. 37 068103
|
[59] |
Zhang J, Zhang S, Qiu X, Wu Y, Sun Q, Zou J, Li T and Chen P 2020 Chin. Phys. Lett. 37 038101
|
[60] |
Zhou T, Zhu X G, Tong M, Zhang Y, Luo X B, Xie X, Feng W, Chen Q, Tan S and Wang Z Y 2019 Chin. Phys. Lett. 36 117303
|
[61] |
Agapito L A, Kioussis N, Goddard I I I W A and Ong N P 2013 Phys. Rev. Lett. 110 176401
|
[62] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[63] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[64] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[65] |
Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M and Dabo I 2009 J. Phys.: Condens. Matter 21 395502
|
[66] |
Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
|
[67] |
Lee K, Murray É D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
|
[68] |
Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201
|
[69] |
Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
|
[70] |
Thonhauser T, Cooper V R, Li S, Puzder A, Hyldgaard P and Langreth D C 2007 Phys. Rev. B 76 125112
|
[71] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[72] |
Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q and Xie L 2015 Nat. Commun. 6 1
|
[73] |
Zhao Y, Qiao J, Yu Z, Yu P, Xu K, Lau S P, Zhou W, Liu Z, Wang X and Ji W 2017 Adv. Mater. 29 1604230
|
[74] |
Qiao X F, Wu J B, Zhou L, Qiao J, Shi W, Chen T, Zhang X, Zhang J, Ji W and Tan P H 2016 Nanoscale 8 8324
|
[75] |
Ji W, Lu Z Y and Gao H 2006 Phys. Rev. Lett. 97 246101
|
[76] |
Wang C, Zhou X, Pan Y, Qiao J, Kong X, Kaun C C and Ji W 2018 Phys. Rev. B 97 245409
|
[77] |
Shulenburger L, Baczewski A D, Zhu Z, Guan J and Tomanek D 2015 Nano Lett. 15 8170
|
[78] |
Jamieson J and McWhan D 1965 J. Chem. Phys. 43 1149
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|