Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 076201    DOI: 10.1088/1674-1056/ab8da7
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations

Peng Wang(王鹏)1, Ning-Chao Zhang(张宁超)1, Cheng-Lu Jiang(蒋城露)2, Fu-Sheng Liu(刘福生)2, Zheng-Tang Liu(刘正堂)3, Qi-Jun Liu(刘其军)2
1 School of Electronic and Information Engineering, Xi'an Technological University, Xi'an 710021, China;
2 School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China;
3 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The first-principles calculations based on density functional theory are used to obtain structural, mechanical, and electronic properties of Zr-Te compounds. The optimized structural parameters are consistent with the available experimental data. The calculated mechanical properties and formation energy show that the Zr-Te compounds are all mechanically and thermodynamically stable. The bulk modulus B, shear modulus G, Young's modulus E, Debye temperature ΘD, and sound velocity vm are listed, which are positively correlated with the increasing of atomic fraction of Zr. The behaviors of density of states of Zr-Te compounds are obtained. Furthermore, the electronic properties are discussed to clarify the bonding characteristics of compounds. The electronic characteristics demonstrate that the Zr-Te systems with different phases are both covalent and metallic.
Keywords:  Zr-Te compounds      first-principles calculations      mechanical properties  
Received:  12 March 2020      Revised:  23 April 2020      Accepted manuscript online: 
PACS:  62.20.-x (Mechanical properties of solids)  
  63.20.dk (First-principles theory)  
  64.70.kd (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574254), the Key Research Project of Science and Technology Department of Shaanxi Province, China (Grant Nos. 2018GY-044 and 2017ZDXM-GY-114), the Innovation Talent Promotion Project of Shaanxi Province, China (Grant No. 2019KJXX-034), the Science and Technology Program of Sichuan Province, China (Grant No. 2018JY0161), and the Fund of the State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, China (Grant No. SKLSP201843).
Corresponding Authors:  Ning-Chao Zhang, Qi-Jun Liu     E-mail:  ningchaozhang@163.com;qijunliu@home.swjtu.edu.cn

Cite this article: 

Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军) Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations 2020 Chin. Phys. B 29 076201

[1] Inoue A 1996 Sci. Rep. RITU A 42 1
[2] Gao X Q, Sun Y T, Wang Z, Li M Z and Bai H Y 2017 Chin. Phys. B 26 016101
[3] Conner R D, Li Y, Nix W D and Johnson W L 2004 Acta Mater. 52 2429
[4] Jiang S Q, Huang Y and Li M Z 2019 Chin. Phys. B 28 046103
[5] Inoue A, Zhang W, Zhang T and Kurosaka K 2001 Acta Mater. 49 2645
[6] Jun W K, Willens R H and Duwez P O L 1960 Nature 187 869
[7] Lin M T, Wan C H and Wu W 2017 Surf. Coat. Technol. 320 217
[8] Abdulsalam M and Joubert D P 2016 Phys. Status Solidi B 253 868
[9] Abdulsalam M and Joubert D P 2015 Eur. Phys. J. B 88 177
[10] Zander D and Köster U 2004 Mater. Sci. Eng. A 375-377 53
[11] Morozova N V, Korobeinikov I V, Kurochka K V, Titov A N and Ovsyannikov S V 2018 J. Phys. Chem. C 122 14362
[12] Gu K, Susilo R A, Ke F, Deng W, Wang Y J, Zhang L K, Xiao H and Chen B 2018 J. Phys.: Condens. Matter 30 385701
[13] Wang C, Wang H F, Chen Y B, Yao S H and Zhou J 2018 J. Appl. Phys. 123 175104
[14] Chen S S, Li X, Lv Y Y, Cao L, Lin D J, Yao S H, Zhou J and Chen Y B 2018 J. Alloys Compd. 764 540
[15] Ullah S, Wang L, Li J X, Li R H and Chen X Q 2019 Chin. Phys. B 28 077105
[16] Guo S D, Wang Y H and Lu W L 2017 New J. Phys. 19 113044
[17] Örlygsson G and Harbrecht B 2001 J. Am. Chem. Soc. 123 4168
[18] Örlygsson G and Harbrecht B 1999 Z. Naturforsch. B 54 1125
[19] Furuseth S and Fjellvag H 1991 Acta Chem. Scand. 45 694
[20] Furuseth S, Brattas L and Kjekshus A 1975 Acta Chem. Scand. A 29 623
[21] Fjellvag H and Kjekshus A 1986 Solid State Commun. 60 91
[22] Öerlygsson G and Harbrecht B 1999 Inorg. Chem. 38 3377
[23] Harbrecht B and Leersch R 1996 J. Alloys Compd. 238 13
[24] de Boer R, Cordfunke E H P, van Vlaanderen P, Ijdo D J W and Plaisier J R 1998 J. Solid State Chem. 139 213
[25] Öerlygsson G and Harbrecht B 2000 Chem.-A Eur. J. 6 4170
[26] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Mater 14 2717
[27] Ceperley D M and Alder B 1980 Phys. Rev. Lett. 45 566
[28] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[29] Campos C E M, Ersching K, de Lima J C, Grandi T A, Höhn H and Pizani P S 2008 J. Alloys Compd. 466 80
[30] Olinger B and Jamieson J C 1973 High Temperatures-High Press. 5 123
[31] Born M and Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press)
[32] Mouhat F and Coudert F 2014 Phys. Rev. B 90 224104
[33] Hill R 1952 Proc. Phys. Soc. Lond. 65 349
[34] Li P, Ma L S, Peng M J, Shu B P and Duan Y H 2018 J. Alloys Compd. 747 905
[35] Bao W Z, Liu D and Duan Y H 2018 Ceram. Int. 44 14053
[36] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[37] Tian Y, Xu B and Zhao Z 2012 Int. J. Refract. Met. Hard Mater 33 93
[38] Kanchana V, Vaitheeswaran G, Svane A and Delin A 2006 J. Phys: Condens. Matter 18 9615
[39] Pugh S F 1954 Philos. Mag. 45 823
[40] Rodgers J L, and Nicewander W A 1988 Am. Statistician 42 59
[41] Rice W R 1989 Evolution 43 223
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[7] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[14] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[15] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
No Suggested Reading articles found!