CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor |
C Cai(蔡淙)1, T T Han(韩婷婷)1, Z G Wang(王政国)1, L Chen(陈磊)1, Y D Wang(王宇迪)1, Z M Xin(信子鸣)1, M W Ma(马明伟)1, Yuan Li(李源)1,2, Y Zhang(张焱)1,2 |
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; 2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract Nematic phase intertwines closely with high-Tc superconductivity in iron-based superconductors. Its mechanism, which is closely related to the pairing mechanism of superconductivity, still remains controversial. Comprehensive characterization of the electronic state reconstruction in the nematic phase is thus crucial. However, most experiments focus only on the reconstruction of band dispersions. Another important characteristic of electronic state, the spectral weight, has not been studied in details so far. Here, we studied the spectral weight transfer in the nematic phase of FeSe0.9S0.1 using angle-resolved photoemission spectroscopy and in-situ detwinning technique. There are two elliptical electron pockets overlapping with each other orthogonally at the Brillouin zone corner. We found that, upon cooling, one electron pocket loses spectral weight and fades away, while the other electron pocket gains spectral weight and becomes pronounced. Our results show that the symmetry breaking of the electronic state is manifested by not only the anisotropic band dispersion but also the band-selective modulation of the spectral weight. Our observation completes our understanding of the nematic electronic state, and put strong constraints on the theoretical models. It further provides crucial clues to understand the gap anisotropy and orbital-selective pairing in iron-selenide superconductors.
|
Received: 19 March 2020
Revised: 28 April 2020
Accepted manuscript online:
|
PACS:
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
73.21.Ac
|
(Multilayers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11888101, 91421107, and 11574004) and the National Key Research and Development Program of China (Grant Nos. 2016YFA0301003 and 2018YFA0305602). |
Corresponding Authors:
Y Zhang
E-mail: yzhang85@pku.edu.cn
|
Cite this article:
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱) Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor 2020 Chin. Phys. B 29 077401
|
[1] |
Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
|
[2] |
Chu J H, Kuo H H, Analytis J G and Fisher I R 2012 Science 337 710
|
[3] |
Johnston D C 2010 Adv. Phys. 59 803
|
[4] |
Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G and Chen X H 2008 Phys. Rev. Lett. 101 257003
|
[5] |
Lv W, Wu J and Phillips P 2009 Phys. Rev. B 80 224506
|
[6] |
Chen C C, Maciejko J, Sorini A P, Moritz B, Singh R R P and Devereaux T P 2010 Phys. Rev. B 82 100504
|
[7] |
Lee C C, Yin W G and Ku W 2009 Phys. Rev. Lett. 103 267001
|
[8] |
Su Y, Liao H and Li T 2015 J. Phys.: Condens. Matter. 27 105702
|
[9] |
Zhang P, Qian T, Richard P, Wang X P, Miao H, Lv B Q, Fu B B, Wolf T, Meingast C, Wu X X, Wang Z Q, Hu J P and Ding H 2015 Phys. Rev. B 91 214503
|
[10] |
Fang C, Yao H, Tsai W F, Hu J P and Kivelson S A 2008 Phys. Rev. B 77 224509
|
[11] |
Fernandes R M, Chubukov A V, Knolle J, Eremin I and Schmalian J 2012 Phys. Rev. B 85 024534
|
[12] |
Zhang Y, Yi M, Liu Z K, Li W, Lee J J, Moore R G, Hashimoto M, Nakajima M, Eisaki H, Mo S K, Hussain Z, Devereaux T P, Shen Z X and Lu D H 2016 Phys. Rev. B 94 115153
|
[13] |
Yi M, Zhang Y, Heike P, Chen T, Ye Z R, Hashimoto M, Yu R, Si Q, Lee D H, Dai P C, Shen Z X, Lu D H and Birgeneau R J 2019 Phys. Rev. X 9 041049
|
[14] |
Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata-Gonokami M, Ono K, Kumigashira H, Böhmer A E, Hardy F, Wolf T, Meingast C, Löhnysen H, Ikeda H and Ishizaka K 2014 Phys. Rev. B 90 121111
|
[15] |
Watson M D, Haghighirad A A, Rhodes L C, Hoesch M and Kim T K 2017 New. J. Phys. 19 103021
|
[16] |
Fedorov A, Yaresko A, Kim T K, Kushnirenko E, Haubold E, Wolf T Hoesch M, Grüeneis A, Büchner B and Borisenko S V 2016 Sci. Rep. 6 36834
|
[17] |
McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C and Cava R J 2009 Phys. Rev. Lett. 103 057002
|
[18] |
Böhmer A E, Taufour V, Straszheim W E, Wolf T and Canfield P C 2016 Phys. Rev. B 94 024526
|
[19] |
Hicks C W, Barber M E, Edkins S D, Brodsky D O and Mackenzie A P 2014 Rev. Sci. Instr. 85 065003
|
[20] |
Pfau H, Chen S D, Yi M, Hashimoto M, Rotundu C R, Palmstrom J C, Chen T, Dai P C, Straquadine J, Hristov A, Birgeneau R J, Fisher I R, Lu D H and Shen Z X 2019 Phys. Rev. Lett. 123 066402
|
[21] |
Graser S, Maier T A, Hirschfeld P J and Scalapino D J 2009 New J. Phys. 11 025016
|
[22] |
Fisher I R, Degiorgi L and Shen Z X 2011 Rep. Prog. Phys. 74 124506
|
[23] |
Zhang Y, He C, Ye Z R, Jiang J, Chen F, Xu M, Ge Q Q, Xie B P, Wei J, Aeschlimann M, Cui X Y, Shi M, Hu J P and Feng D L 2012 Phys. Rev. B 85 085121
|
[24] |
Brouet V, Jensen M F, Lin P H, Taleb-Ibrahimi A, Le Févre P, Bertran F, Lin C, Ku W, Forget A and Colson D 2012 Phys. Rev. B 86 075123
|
[25] |
Yu R and Si Q M 2011 Phys. Rev. B 84 235115
|
[26] |
Yi M, Liu Z K, Zhang Y, et al. 2015 Nat. Commun. 6 7777
|
[27] |
Zhang Y, Chen F, He C, Zhou B, Xie B P, Fang C, Tsai W F, Chen X H, Hayashi H, Jiang J, Iwasawa H, Shimada K, Namatame H, Taniguchi M, Hu J P and Feng D L 2011 Phys. Rev. B 83 054510
|
[28] |
Wang Q S, Shen Y, Pan B Y, Hao Y Q, Ma M W, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H B and Zhao J 2016 Nat. Mater. 15 159
|
[29] |
Sprau P O, Kostin A, Kreisel A, Böhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M and Séamus Davis J C 2017 Science 357 75
|
[30] |
Xu H C, Niu X H, Xu D F, Jiang J, Chen Q Y, Song Q, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Wang Q S, Wo H L, Zhao J, Peng R and Feng D L 2016 Phys. Rev. Lett. 117 157003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|