Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077401    DOI: 10.1088/1674-1056/ab90ec
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor

C Cai(蔡淙)1, T T Han(韩婷婷)1, Z G Wang(王政国)1, L Chen(陈磊)1, Y D Wang(王宇迪)1, Z M Xin(信子鸣)1, M W Ma(马明伟)1, Yuan Li(李源)1,2, Y Zhang(张焱)1,2
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  Nematic phase intertwines closely with high-Tc superconductivity in iron-based superconductors. Its mechanism, which is closely related to the pairing mechanism of superconductivity, still remains controversial. Comprehensive characterization of the electronic state reconstruction in the nematic phase is thus crucial. However, most experiments focus only on the reconstruction of band dispersions. Another important characteristic of electronic state, the spectral weight, has not been studied in details so far. Here, we studied the spectral weight transfer in the nematic phase of FeSe0.9S0.1 using angle-resolved photoemission spectroscopy and in-situ detwinning technique. There are two elliptical electron pockets overlapping with each other orthogonally at the Brillouin zone corner. We found that, upon cooling, one electron pocket loses spectral weight and fades away, while the other electron pocket gains spectral weight and becomes pronounced. Our results show that the symmetry breaking of the electronic state is manifested by not only the anisotropic band dispersion but also the band-selective modulation of the spectral weight. Our observation completes our understanding of the nematic electronic state, and put strong constraints on the theoretical models. It further provides crucial clues to understand the gap anisotropy and orbital-selective pairing in iron-selenide superconductors.
Keywords:  nematic order      superconductivity      iron-based superconductors      angle-resolved photoemission spectroscopy  
Received:  19 March 2020      Revised:  28 April 2020      Accepted manuscript online: 
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.70.Xa (Pnictides and chalcogenides)  
  79.60.-i (Photoemission and photoelectron spectra)  
  73.21.Ac (Multilayers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11888101, 91421107, and 11574004) and the National Key Research and Development Program of China (Grant Nos. 2016YFA0301003 and 2018YFA0305602).
Corresponding Authors:  Y Zhang     E-mail:  yzhang85@pku.edu.cn

Cite this article: 

C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱) Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor 2020 Chin. Phys. B 29 077401

[1] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
[2] Chu J H, Kuo H H, Analytis J G and Fisher I R 2012 Science 337 710
[3] Johnston D C 2010 Adv. Phys. 59 803
[4] Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G and Chen X H 2008 Phys. Rev. Lett. 101 257003
[5] Lv W, Wu J and Phillips P 2009 Phys. Rev. B 80 224506
[6] Chen C C, Maciejko J, Sorini A P, Moritz B, Singh R R P and Devereaux T P 2010 Phys. Rev. B 82 100504
[7] Lee C C, Yin W G and Ku W 2009 Phys. Rev. Lett. 103 267001
[8] Su Y, Liao H and Li T 2015 J. Phys.: Condens. Matter. 27 105702
[9] Zhang P, Qian T, Richard P, Wang X P, Miao H, Lv B Q, Fu B B, Wolf T, Meingast C, Wu X X, Wang Z Q, Hu J P and Ding H 2015 Phys. Rev. B 91 214503
[10] Fang C, Yao H, Tsai W F, Hu J P and Kivelson S A 2008 Phys. Rev. B 77 224509
[11] Fernandes R M, Chubukov A V, Knolle J, Eremin I and Schmalian J 2012 Phys. Rev. B 85 024534
[12] Zhang Y, Yi M, Liu Z K, Li W, Lee J J, Moore R G, Hashimoto M, Nakajima M, Eisaki H, Mo S K, Hussain Z, Devereaux T P, Shen Z X and Lu D H 2016 Phys. Rev. B 94 115153
[13] Yi M, Zhang Y, Heike P, Chen T, Ye Z R, Hashimoto M, Yu R, Si Q, Lee D H, Dai P C, Shen Z X, Lu D H and Birgeneau R J 2019 Phys. Rev. X 9 041049
[14] Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata-Gonokami M, Ono K, Kumigashira H, Böhmer A E, Hardy F, Wolf T, Meingast C, Löhnysen H, Ikeda H and Ishizaka K 2014 Phys. Rev. B 90 121111
[15] Watson M D, Haghighirad A A, Rhodes L C, Hoesch M and Kim T K 2017 New. J. Phys. 19 103021
[16] Fedorov A, Yaresko A, Kim T K, Kushnirenko E, Haubold E, Wolf T Hoesch M, Grüeneis A, Büchner B and Borisenko S V 2016 Sci. Rep. 6 36834
[17] McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C and Cava R J 2009 Phys. Rev. Lett. 103 057002
[18] Böhmer A E, Taufour V, Straszheim W E, Wolf T and Canfield P C 2016 Phys. Rev. B 94 024526
[19] Hicks C W, Barber M E, Edkins S D, Brodsky D O and Mackenzie A P 2014 Rev. Sci. Instr. 85 065003
[20] Pfau H, Chen S D, Yi M, Hashimoto M, Rotundu C R, Palmstrom J C, Chen T, Dai P C, Straquadine J, Hristov A, Birgeneau R J, Fisher I R, Lu D H and Shen Z X 2019 Phys. Rev. Lett. 123 066402
[21] Graser S, Maier T A, Hirschfeld P J and Scalapino D J 2009 New J. Phys. 11 025016
[22] Fisher I R, Degiorgi L and Shen Z X 2011 Rep. Prog. Phys. 74 124506
[23] Zhang Y, He C, Ye Z R, Jiang J, Chen F, Xu M, Ge Q Q, Xie B P, Wei J, Aeschlimann M, Cui X Y, Shi M, Hu J P and Feng D L 2012 Phys. Rev. B 85 085121
[24] Brouet V, Jensen M F, Lin P H, Taleb-Ibrahimi A, Le Févre P, Bertran F, Lin C, Ku W, Forget A and Colson D 2012 Phys. Rev. B 86 075123
[25] Yu R and Si Q M 2011 Phys. Rev. B 84 235115
[26] Yi M, Liu Z K, Zhang Y, et al. 2015 Nat. Commun. 6 7777
[27] Zhang Y, Chen F, He C, Zhou B, Xie B P, Fang C, Tsai W F, Chen X H, Hayashi H, Jiang J, Iwasawa H, Shimada K, Namatame H, Taniguchi M, Hu J P and Feng D L 2011 Phys. Rev. B 83 054510
[28] Wang Q S, Shen Y, Pan B Y, Hao Y Q, Ma M W, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H B and Zhao J 2016 Nat. Mater. 15 159
[29] Sprau P O, Kostin A, Kreisel A, Böhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M and Séamus Davis J C 2017 Science 357 75
[30] Xu H C, Niu X H, Xu D F, Jiang J, Chen Q Y, Song Q, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Wang Q S, Wo H L, Zhao J, Peng R and Feng D L 2016 Phys. Rev. Lett. 117 157003
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[4] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[5] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[6] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[7] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[8] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[9] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[10] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[11] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[12] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[13] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[14] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[15] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
No Suggested Reading articles found!