CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study |
Xiao-Ping Wei(魏小平)1, Tie-Yi Cao(曹铁义)1, Xiao-Wei Sun(孙小伟)1, Qiang Gao(高强)2, Peifeng Gao(高配峰)3, Zhi-Lei Gao(高治磊)1, Xiao-Ma Tao(陶小马)4 |
1 The School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China; 2 Institute of Materials Science, Technische Universitat Darmstadt, 64287 Darmstadt, Germany; 3 Key Laboratory of Mechanics on Western Disaster and Environment, Ministry of Education, College of Civil Engineering and Mechanics, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China; 4 School of Physical Science and Technology, Guangxi University, Nanning 530004, China |
|
|
Abstract Using the first-principles calculations, we study the structural, electronic, and magnetic properties along with exchange interactions and Curie temperatures for CrZrCoZ (Z=Al, Ga, In, Tl, Si, Pb) quaternary Heusler alloys. The results show that the CrZrCoZ alloys are half-metallic ferrimagnets, and their total spin magnetic moments, which are mainly carried by the Cr atom, obey the Slater-Pauling rule. Analysis of local density of states confirms that the exchange splitting between eg and t2g states leads to the formation of half-metallic gap. According to the calculated Heisenberg exchange coupling parameters, it is found that the Cr(A)-Cr(A) and Cr(A)-Zr(B) exchanges dominate the appearance of ferrimagnetic states in CrZrCoZ (Z=Al, Ga, In, Tl, Pb) alloys, and it is the Cr(A)-Zr(B) and Zr(B)-Zr(B) exchanges for CrZrCoSi alloy. Finally, we estimate the Curie temperatures of CrZrCoZ by using mean-field approximation, it is found that the CrZrCoZ (Z=Al, Ga, In, Tl, Pb) alloys have noticeably higher Curie temperatures than room temperature. So, we expect that the CrZrCoZ alloys are promising candidates in spintronic applications in future.
|
Received: 23 March 2020
Revised: 15 May 2020
Accepted manuscript online:
|
PACS:
|
71.20.Lp
|
(Intermetallic compounds)
|
|
85.75.Dd
|
(Magnetic memory using magnetic tunnel junctions)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
77.80.B-
|
(Phase transitions and Curie point)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864021) and Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University, China, the Key Talent Foundation of Gansu Province, China (Grant No. 2020RCXM100), and Excellent Research Team of Lanzhou Jiaotong University, China (Grant No. 201803). |
Corresponding Authors:
Xiao-Ping Wei
E-mail: weixp2008@gmail.com
|
Cite this article:
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马) Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study 2020 Chin. Phys. B 29 077105
|
[1] |
Jourdan M, Minar J, Braun J, et al. 2014 Nat. Commun. 5 3974
|
[2] |
Li G N and Jin Y J 2009 Chin. Phys. Lett. 26 107101
|
[3] |
Zhao K, Zhang K, Wang J J, Yu J and Wu S X 2011 Acta Phys. Sin. 60 127101 (in Chinese)
|
[4] |
Cheng Z M, Wang X Q, Wang F, Lu L Y, Liu G B, Duan Z F and NieZ X 2011 Acta Phys. Sin. 60 096301 (in Chinese)
|
[5] |
Gao Y C, Wang X T and Habib R 2015 Chin. Phys. B 24 67102
|
[6] |
Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H and Wu G H 2003 Appl. Phys. Lett. 82 424
|
[7] |
Kainuma R, lmano Y, lto W, Morito H, Sutou Y, Oikawa K, Fujita Aand lshaida K 2006 Appl. Phys. Lett. 88 192513
|
[8] |
Tan C L, Tian X H and Cai W 2008 Chin. Phys. Lett. 25 3372
|
[9] |
Chen J, Li Y, Shang J X and Xu H B 2009 Chin. Phys. Lett. 26 47101
|
[10] |
Zhao J J, Shu D, Qi X, Liu E K, Zhu W, Feng L, Wang W H and Wu G H 2011 Acta Phys. Sin. 60 107203 (in Chinese)
|
[11] |
Li G T, Liu Z H, Meng F Y, Ma X Q and Wu G H 2013 Chin. Phys. B 22 126201
|
[12] |
Bainsla L, Mallick A I, Raja M M, Nigam A K, Varaprasad B S D ChS, Takahashi Y K, Alam A, Suresh K G and Hono K 2015 Phys. Rev. B 91 104408
|
[13] |
Xu G Z, Liu E K, Du Y, Li G J, Liu G D, Wang W H and Wu G H 2013 Europhys. Lett. 102 17007
|
[14] |
Gao Q, Xie H H, Li L, Lei G, Wang K, Deng J B and Hu X R 2015 Superlattice Microst. 85 536
|
[15] |
Gao Q, Opahle I and Zhang H B 2019 Phys. Rev. Materials 3 024410
|
[16] |
Khan M, Ali N and Stadler S 2007 J. Phys. Appl. 101 053919
|
[17] |
Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
|
[18] |
Zhang X W 2018 Chin. Phys. B 27 127101
|
[19] |
Wei X P, Gao P F and Zhang Y L 2020 Curr. Appl. Phys. 20 593
|
[20] |
Wernick J H, Hull G W, Geballe T H, Bernardini J E and Waszczak J V 1983 Mater. Lett. 2 90
|
[21] |
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von MolnarS, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
|
[22] |
Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1
|
[23] |
Heusler F 1903 Verh. DPG. 5 219
|
[24] |
Heusler F, Starck W and Haupt E 1903 Verh. DPG. 5 220
|
[25] |
Drews J, Eberz U and Schuster H 1986 J. Less-Common Met. 116 271
|
[26] |
Dai X, Liu G, Fecher G H, Felser C, Li Y and Liu H 2009 J. Appl.Phys. 105 07E901
|
[27] |
Gao G Y, Hu L, Yao K L, Luo B and Liu N 2013 J. Alloys Compd. 551 539
|
[28] |
Alijani V, Winterlik J, Feher G H, Naghavi S S and Felser C 2011 Phys. Rev. B 83 184428
|
[29] |
Alijani V, Ouardi S, Fecher G H, Winterlik J, Naghavi S S, Kozina X, Stryganyuk G, Felser C, lkenaga E, Yamashita Y, Ueda S and Kobayashi K 2011 Phys. Rev. B 84 224416
|
[30] |
Kundu A, Ghosh S, Banerjee R, Ghosh S and Sanyal B 2017 Sci. Rep. 7 1803
|
[31] |
Kandpal H C, Ksenofontov V, Wojcik M, Seshadri R and Felser C 2007 J. Phys. D: Appl. Phys. 40 1587
|
[32] |
Singh M, Saini H S, Thakur J, Reshak A H and Kashyap M K 2013 J. Alloys Compd. 580 201
|
[33] |
Wang X T, Cui Y T, Liu X F and Liu G D 2015 J. Magn. Mater. Magn. 394 50
|
[34] |
Gökoğlu G 2012 Solid State Sci. 14 1273
|
[35] |
Rasool M N, Mehmood S, Sattar M A, Khan M A and Hussain A 2015 J. Mag. Mag. Mater. 395 97
|
[36] |
Kubler J, Fecher G H and Felser C 2007 Phys. Rev. B 76 024414
|
[37] |
Nehra J, Sudheesh V D, Lakshmi N, and Venugopalan K and 2013 Phys. Status Solidi RRL 7 289
|
[38] |
Wang X T, Khachai H, Khenata R, et al. 2017 Sci. Rep. 7 16183
|
[39] |
Feng L, Ma J, Yang Y, Lin T and Wang L 2018 Appl. Sci. 8 2370
|
[40] |
Hoat D M 2019 Chem. Phys. 523 130
|
[41] |
Enamullah Venkateswara Y, Gupta S, Varma M R, Singh P, Suresh K G and Alam A 2015 Phys. Rev. B 92 224413
|
[42] |
Jain R, Jain V K, Chandra A R, Jain V and Lakshmi N 2018 J. Supercond. Nov. Magn. 31 2399
|
[43] |
Bahnes A, Boukortt A, Abbassa H, Aimouch D E, Hayn R and Zaoui A 2018 J. Alloys Compd. 731 1208
|
[44] |
Kang X H and Zhang J M 2017 J. Phys. Chem. Solids 105 9
|
[45] |
Gao Y C and Gao X 2015 AIP Adv. 5 057157
|
[46] |
Meinert M and Geisler M P 2013 J. Magn. Mater. Magn. 341 72
|
[47] |
Mohanta S K, Tao Y X, Yan X Y, Qin G H, Chandragiri V, Li X, JingC, Cao S X, Zhang J C, Qiao Z H, Gu H and Ren W 2017 J. Mater. Magn. 430 430
|
[48] |
Jin H S and Lee K W 2019 Curr. Appl. Phys. 19 193
|
[49] |
Wei X P, Zhang Y L, Wang T, Sun X W, Song T, Guo P and Deng J B 2017 Mater. Res. Bull. 86 139
|
[50] |
Wei X P, Gao P F, Zhang Y L and Zhang H B 2019 J. Magn. Mater. Magn. 477 190
|
[51] |
Yan P L, Zhang J M and Xu K W 2015 J. Magn. Mater. Magn. 391 43
|
[52] |
Koepernik K and Eschrig K 1999 Phys. Rev. B 59 1743
|
[53] |
Opahle I, Koepernik K and Eschrig H 1999 Phys. Rev. B 60 14035.
|
[54] |
Ebert H, Kodderitzsch D and Minar J 2011 Rep. Prog. Phys. 74 096501
|
[55] |
Lloyd P and Smith P V 1972 Adv. Phys. 21 69
|
[56] |
Zeller R 2008 J. Phys.: Condens. Matter 20 035220
|
[57] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[58] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[59] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[60] |
Zhang W X, Song Z D, Peng B and Zhang W L 2012 J. Appl. Phys. 112 043904
|
[61] |
Wei X P and Zhou Y H 2018 Intermetallics 93 283
|
[62] |
Wei X P, Zhang Y L, Sun X W, Song T, Guo P, Gao Y, Zhang J L, ZhuX F and Deng J B 2017 J. Alloys Compd. 694 1254
|
[63] |
Tanaka M A, Lshikawa Y, Wada Y, Hori S, Murata A, Horii S, Yamanishi Y, Mibu K, Kondou K, Ono T and Kasai S 2012 J. Appl. Phys. 111 053902
|
[64] |
Yousuf S and Gupta D C 2017 Mater. Res. Express 4 116307
|
[65] |
Johnston I D and Consortium for Upper Level Physics Software 1996 Solid State Physics Simulations (New York: Wiley)
|
[66] |
Liechtenstein A I, Katsnelson M I, Antropov V P and Gubanov V A 1987 J. Magn. Mater. Magn. 67 65
|
[67] |
Skaftouros S, Özdoğan K, Şaşioğlu E and Galanakis I 2013 Phys. Rev. B 87 024420
|
[68] |
Özdoğan K, Şaşioğlu E and Galanakis I 2013 Appl. J. Phys. 113 193903
|
[69] |
Şaşioğlu E, Sandratskii L M and Bruno P 2005 Phys. Rev. B 72 184415
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|