Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077105    DOI: 10.1088/1674-1056/ab969b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study

Xiao-Ping Wei(魏小平)1, Tie-Yi Cao(曹铁义)1, Xiao-Wei Sun(孙小伟)1, Qiang Gao(高强)2, Peifeng Gao(高配峰)3, Zhi-Lei Gao(高治磊)1, Xiao-Ma Tao(陶小马)4
1 The School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China;
2 Institute of Materials Science, Technische Universitat Darmstadt, 64287 Darmstadt, Germany;
3 Key Laboratory of Mechanics on Western Disaster and Environment, Ministry of Education, College of Civil Engineering and Mechanics, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China;
4 School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Abstract  Using the first-principles calculations, we study the structural, electronic, and magnetic properties along with exchange interactions and Curie temperatures for CrZrCoZ (Z=Al, Ga, In, Tl, Si, Pb) quaternary Heusler alloys. The results show that the CrZrCoZ alloys are half-metallic ferrimagnets, and their total spin magnetic moments, which are mainly carried by the Cr atom, obey the Slater-Pauling rule. Analysis of local density of states confirms that the exchange splitting between eg and t2g states leads to the formation of half-metallic gap. According to the calculated Heisenberg exchange coupling parameters, it is found that the Cr(A)-Cr(A) and Cr(A)-Zr(B) exchanges dominate the appearance of ferrimagnetic states in CrZrCoZ (Z=Al, Ga, In, Tl, Pb) alloys, and it is the Cr(A)-Zr(B) and Zr(B)-Zr(B) exchanges for CrZrCoSi alloy. Finally, we estimate the Curie temperatures of CrZrCoZ by using mean-field approximation, it is found that the CrZrCoZ (Z=Al, Ga, In, Tl, Pb) alloys have noticeably higher Curie temperatures than room temperature. So, we expect that the CrZrCoZ alloys are promising candidates in spintronic applications in future.
Keywords:  quaternary Heusler alloys      electronic structure      magnetic properties      Curie temperature  
Received:  23 March 2020      Revised:  15 May 2020      Accepted manuscript online: 
PACS:  71.20.Lp (Intermetallic compounds)  
  85.75.Dd (Magnetic memory using magnetic tunnel junctions)  
  75.50.-y (Studies of specific magnetic materials)  
  77.80.B- (Phase transitions and Curie point)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864021) and Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University, China, the Key Talent Foundation of Gansu Province, China (Grant No. 2020RCXM100), and Excellent Research Team of Lanzhou Jiaotong University, China (Grant No. 201803).
Corresponding Authors:  Xiao-Ping Wei     E-mail:  weixp2008@gmail.com

Cite this article: 

Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马) Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study 2020 Chin. Phys. B 29 077105

[1] Jourdan M, Minar J, Braun J, et al. 2014 Nat. Commun. 5 3974
[2] Li G N and Jin Y J 2009 Chin. Phys. Lett. 26 107101
[3] Zhao K, Zhang K, Wang J J, Yu J and Wu S X 2011 Acta Phys. Sin. 60 127101 (in Chinese)
[4] Cheng Z M, Wang X Q, Wang F, Lu L Y, Liu G B, Duan Z F and NieZ X 2011 Acta Phys. Sin. 60 096301 (in Chinese)
[5] Gao Y C, Wang X T and Habib R 2015 Chin. Phys. B 24 67102
[6] Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H and Wu G H 2003 Appl. Phys. Lett. 82 424
[7] Kainuma R, lmano Y, lto W, Morito H, Sutou Y, Oikawa K, Fujita Aand lshaida K 2006 Appl. Phys. Lett. 88 192513
[8] Tan C L, Tian X H and Cai W 2008 Chin. Phys. Lett. 25 3372
[9] Chen J, Li Y, Shang J X and Xu H B 2009 Chin. Phys. Lett. 26 47101
[10] Zhao J J, Shu D, Qi X, Liu E K, Zhu W, Feng L, Wang W H and Wu G H 2011 Acta Phys. Sin. 60 107203 (in Chinese)
[11] Li G T, Liu Z H, Meng F Y, Ma X Q and Wu G H 2013 Chin. Phys. B 22 126201
[12] Bainsla L, Mallick A I, Raja M M, Nigam A K, Varaprasad B S D ChS, Takahashi Y K, Alam A, Suresh K G and Hono K 2015 Phys. Rev. B 91 104408
[13] Xu G Z, Liu E K, Du Y, Li G J, Liu G D, Wang W H and Wu G H 2013 Europhys. Lett. 102 17007
[14] Gao Q, Xie H H, Li L, Lei G, Wang K, Deng J B and Hu X R 2015 Superlattice Microst. 85 536
[15] Gao Q, Opahle I and Zhang H B 2019 Phys. Rev. Materials 3 024410
[16] Khan M, Ali N and Stadler S 2007 J. Phys. Appl. 101 053919
[17] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
[18] Zhang X W 2018 Chin. Phys. B 27 127101
[19] Wei X P, Gao P F and Zhang Y L 2020 Curr. Appl. Phys. 20 593
[20] Wernick J H, Hull G W, Geballe T H, Bernardini J E and Waszczak J V 1983 Mater. Lett. 2 90
[21] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von MolnarS, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[22] Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1
[23] Heusler F 1903 Verh. DPG. 5 219
[24] Heusler F, Starck W and Haupt E 1903 Verh. DPG. 5 220
[25] Drews J, Eberz U and Schuster H 1986 J. Less-Common Met. 116 271
[26] Dai X, Liu G, Fecher G H, Felser C, Li Y and Liu H 2009 J. Appl.Phys. 105 07E901
[27] Gao G Y, Hu L, Yao K L, Luo B and Liu N 2013 J. Alloys Compd. 551 539
[28] Alijani V, Winterlik J, Feher G H, Naghavi S S and Felser C 2011 Phys. Rev. B 83 184428
[29] Alijani V, Ouardi S, Fecher G H, Winterlik J, Naghavi S S, Kozina X, Stryganyuk G, Felser C, lkenaga E, Yamashita Y, Ueda S and Kobayashi K 2011 Phys. Rev. B 84 224416
[30] Kundu A, Ghosh S, Banerjee R, Ghosh S and Sanyal B 2017 Sci. Rep. 7 1803
[31] Kandpal H C, Ksenofontov V, Wojcik M, Seshadri R and Felser C 2007 J. Phys. D: Appl. Phys. 40 1587
[32] Singh M, Saini H S, Thakur J, Reshak A H and Kashyap M K 2013 J. Alloys Compd. 580 201
[33] Wang X T, Cui Y T, Liu X F and Liu G D 2015 J. Magn. Mater. Magn. 394 50
[34] Gökoğlu G 2012 Solid State Sci. 14 1273
[35] Rasool M N, Mehmood S, Sattar M A, Khan M A and Hussain A 2015 J. Mag. Mag. Mater. 395 97
[36] Kubler J, Fecher G H and Felser C 2007 Phys. Rev. B 76 024414
[37] Nehra J, Sudheesh V D, Lakshmi N, and Venugopalan K and 2013 Phys. Status Solidi RRL 7 289
[38] Wang X T, Khachai H, Khenata R, et al. 2017 Sci. Rep. 7 16183
[39] Feng L, Ma J, Yang Y, Lin T and Wang L 2018 Appl. Sci. 8 2370
[40] Hoat D M 2019 Chem. Phys. 523 130
[41] Enamullah Venkateswara Y, Gupta S, Varma M R, Singh P, Suresh K G and Alam A 2015 Phys. Rev. B 92 224413
[42] Jain R, Jain V K, Chandra A R, Jain V and Lakshmi N 2018 J. Supercond. Nov. Magn. 31 2399
[43] Bahnes A, Boukortt A, Abbassa H, Aimouch D E, Hayn R and Zaoui A 2018 J. Alloys Compd. 731 1208
[44] Kang X H and Zhang J M 2017 J. Phys. Chem. Solids 105 9
[45] Gao Y C and Gao X 2015 AIP Adv. 5 057157
[46] Meinert M and Geisler M P 2013 J. Magn. Mater. Magn. 341 72
[47] Mohanta S K, Tao Y X, Yan X Y, Qin G H, Chandragiri V, Li X, JingC, Cao S X, Zhang J C, Qiao Z H, Gu H and Ren W 2017 J. Mater. Magn. 430 430
[48] Jin H S and Lee K W 2019 Curr. Appl. Phys. 19 193
[49] Wei X P, Zhang Y L, Wang T, Sun X W, Song T, Guo P and Deng J B 2017 Mater. Res. Bull. 86 139
[50] Wei X P, Gao P F, Zhang Y L and Zhang H B 2019 J. Magn. Mater. Magn. 477 190
[51] Yan P L, Zhang J M and Xu K W 2015 J. Magn. Mater. Magn. 391 43
[52] Koepernik K and Eschrig K 1999 Phys. Rev. B 59 1743
[53] Opahle I, Koepernik K and Eschrig H 1999 Phys. Rev. B 60 14035.
[54] Ebert H, Kodderitzsch D and Minar J 2011 Rep. Prog. Phys. 74 096501
[55] Lloyd P and Smith P V 1972 Adv. Phys. 21 69
[56] Zeller R 2008 J. Phys.: Condens. Matter 20 035220
[57] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[58] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[59] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[60] Zhang W X, Song Z D, Peng B and Zhang W L 2012 J. Appl. Phys. 112 043904
[61] Wei X P and Zhou Y H 2018 Intermetallics 93 283
[62] Wei X P, Zhang Y L, Sun X W, Song T, Guo P, Gao Y, Zhang J L, ZhuX F and Deng J B 2017 J. Alloys Compd. 694 1254
[63] Tanaka M A, Lshikawa Y, Wada Y, Hori S, Murata A, Horii S, Yamanishi Y, Mibu K, Kondou K, Ono T and Kasai S 2012 J. Appl. Phys. 111 053902
[64] Yousuf S and Gupta D C 2017 Mater. Res. Express 4 116307
[65] Johnston I D and Consortium for Upper Level Physics Software 1996 Solid State Physics Simulations (New York: Wiley)
[66] Liechtenstein A I, Katsnelson M I, Antropov V P and Gubanov V A 1987 J. Magn. Mater. Magn. 67 65
[67] Skaftouros S, Özdoğan K, Şaşioğlu E and Galanakis I 2013 Phys. Rev. B 87 024420
[68] Özdoğan K, Şaşioğlu E and Galanakis I 2013 Appl. J. Phys. 113 193903
[69] Şaşioğlu E, Sandratskii L M and Bruno P 2005 Phys. Rev. B 72 184415
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[8] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[11] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[12] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[13] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[14] High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice
Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127203.
[15] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
No Suggested Reading articles found!