CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases |
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良) |
School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China |
|
|
Abstract The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells (ADQWs) with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37< x < 0.62 is discussed. The mixed phases are taken into account by our weight model of fitting. The states of excitons are obtained by a finite difference method and a variational procedure in consideration of built-in electric fields (BEFs) and the Hartree potential. The optical absorption coefficients (OACs) of exciton interstate transition are obtained by the density matrix method. The results show that Hartree potential bends the conduction and valence bands, whereas a BEF tilts the bands and the combined effect enforces electrons and holes to approach the opposite interfaces to decrease the Coulomb interaction effects between electrons and holes. Furthermore, the OACs indicate a transformation between direct and indirect excitons in zinc-blende ADQWs due to the quantum confinement effects. There are two kinds of peaks corresponding to wurtzite and zinc-blende structures respectively, and the OACs merge together under some special conditions. The computed result of exciton interband emission energy agrees well with a previous experiment. Our conclusions are helpful for further relative theoretical studies, experiments, and design of devices consisting of these quantum well structures.
|
Received: 21 December 2019
Revised: 18 April 2020
Accepted manuscript online:
|
PACS:
|
71.35.-y
|
(Excitons and related phenomena)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
73.21.Fg
|
(Quantum wells)
|
|
71.55.Gs
|
(II-VI semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61764012). |
Corresponding Authors:
Shi-Liang Ban
E-mail: slban@imu.edu.cn
|
Cite this article:
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良) Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases 2020 Chin. Phys. B 29 077104
|
[1] |
Sato S and Satoh S 1999 Elctron. Lett. 35 1251
|
[2] |
Salhi A, Rouillard Y, Angellier J, Grech P and Vicet A 2004 Elctron. Lett. 40 424
|
[3] |
Simoyama T, Yoshida H, Kasai J I, Mozume T and Ishikawa H 2009 Appl. Phys. Lett. 94 101902
|
[4] |
Choy W C H, Li E and Weiss B 1998 IEEE J. Quantum Electron. 34 1846
|
[5] |
Zhang Y J, Zhang X H, Tang B, Tian C, Xu C Y, Dong H X and Zhou W H 2018 Nanoscale 10 14082
|
[6] |
Zhang X H, Zhang Y J, Dong H X, Tang B, Li D H, Tian C, Xu C Y and Zhou W H 2019 Nanoscale 11 4496
|
[7] |
Ju Z G, Shan C X, Yang C L, Zhang J Y, Yao B, Zhao D X, Shen D Z and Fan X W 2009 Appl. Phys. Lett. 94 101902
|
[8] |
Park S-H and Ahn D 2007 J. Cryst. Growth 301-302 353
|
[9] |
Yano M, Hashimoto K, Fujimoto K, Koike K, Sasa S, Inoue M, Uetsuji Y, Ohnishi Y T and Inaba K 2007 J. Cryst. Growth 301-302 353
|
[10] |
Takeuchi I, Yang W, Chang K S, Aronova M A, Venkatesan T, Vispute R D, and Bendersky L A 2004 J. Appl. Phys. 94 7336
|
[11] |
Fan X F, Sun H D, Shen Z X, Kuo J L and Lu Y M 2015 J. Nanomater. 2015 7
|
[12] |
Riane H, Mokaddem A, Temimi L, Doumi B, Bahlouli S and Hamdache F 2017 J. Adv. Manuf. Tech. 89 629
|
[13] |
Djelal A, Chaibi K, Tari N, Zitouni K and Kadri A 2017 Superlattice Microst. 109 81
|
[14] |
Zippel J, Heitsch S, Stölzel M, Müller A, Wenckstern H, Benndorf G, Lorenz M, Hochmuth H and Grundmann M 2010 J. Lumin. 130 520
|
[15] |
Segawa Y, Sun H D, Makino T, Kawasaki M and Koinuma H 2015 Phys. Status Solidi A 192 14
|
[16] |
Stachowicz M, Pietrzyk M A, Sajkowski J M, Przezdziecka E, Teisseyre H, Witkowski B, Alves E and Kozanecki A 2017 J. Lumin. 186 262
|
[17] |
Yu F M, Zhang L and Guo K 2011 Superlattice Microst. 50 128
|
[18] |
Gu Z, Zhu Z N, Wang M M, Wang Y Q, Wang M S, Qu Y and Ban S L 2017 Superlattice Microst. 102 391
|
[19] |
Song L Y, Han Z Q, Zan Y H and Ban S L 2019 Opt. Commun. 444 142
|
[20] |
Asgari A, Safa S and Mouchliadis L 2011 Superlattice Microst. 49 487
|
[21] |
Grigoryev P S, Kurdyubov A S, Kuznetsova M S, Ignatiev I V, Efimov Y P, Eliseev S A, Petrov V V, Lovtcius V A and Shapochkin P Y 2016 Superlattice Microst. 97 452
|
[22] |
Tan C M, Xu J M and Zukotynski S 1993 J. Appl. Phys. 73 2921
|
[23] |
Brounkov P, Benyattou N T and Guillot G 1996 J. Appl. Phys. 80 864
|
[24] |
Meng L, Zhang J, Li Q and Hou X 2015 J. Nanomater. 2015 7
|
[25] |
Xia C, Zhang H, An J, Wei S and Jia Y 2003 Phys. Rev. B 68 205314
|
[26] |
Senger R T and Bajaj K K 2003 Phys. Rev. B 68 205314
|
[27] |
Elangovan P, John Peter A and Kyoo Yoo C 2013 J. Lumin. 143 314
|
[28] |
Shi J J and Goldys E M 1999 IEEE T. Electron. Dev. 46 83
|
[29] |
Miranda G L, Mora-Ramos M E and Duque C A 2013 Physica B: Condens. Matter 409 78
|
[30] |
Gopal P and Spaldin N A 2006 J. Electron. Mater. 35 538
|
[31] |
Duan Y, Qin L, Tang G and Shi L 2008 Eur. Phys. J. B 66 201
|
[32] |
Furno E, Chiaria S, Penna M, Bellotti E and Goano M 2010 J. Electron. Mater. 39 936
|
[33] |
Tanaka H, Fujita S and Fujita S 2005 Appl. Phys. Lett. 86 192911
|
[34] |
Djelal A, Chaibi K, Tari N, Zitouni K and Kadri A 2017 Superlattice Microst. 109 81
|
[35] |
Xu Y N and Ching W Y 1991 Phys. Rev. B 43 4461
|
[36] |
Park S H and Ahn D 2007 Opt. Quantum Electron. 38 935
|
[37] |
Coli G and Bajaj K K 2001 Appl. Phys. Lett. 78 2861
|
[38] |
Su S C, Zhu H, Zhang L X, He M L, Zhao Z, Yu S F, Wang J N and Ling F C C 2013 Appl. Phys. Lett. 103 131104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|