|
|
Probe of topological invariants using quantum walks of a trapped ion in coherent state space |
Ya Meng(蒙雅)1,2, Feng Mei(梅锋)1,2, Gang Chen(陈刚)1,2,3, Suo-Tang Jia(贾锁堂)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China |
|
|
Abstract We present a protocol to realize topological discrete-time quantum walks, which comprise a sequence of spin-dependent flipping displacement operations and quantum coin tossing operations, with a single trapped ion. It is demonstrated that the information of bulk topological invariants can be extracted by measuring the average projective phonon number when the walk takes place in coherent state space. Interestingly, the specific chiral symmetry owned by our discrete-time quantum walks simplifies the measuring process. Furthermore, we prove the robustness of such bulk topological invariants by introducing dynamical disorder and decoherence. Our work provides a simple method to measure bulk topological features in discrete-time quantum walks, which can be experimentally realized in the system of single trapped ions.
|
Received: 25 February 2020
Revised: 06 April 2020
Accepted manuscript online:
|
PACS:
|
05.40.Fb
|
(Random walks and Levy flights)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
37.10.Vz
|
(Mechanical effects of light on atoms, molecules, and ions)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Natural National Science Foundation of China (Grant Nos. 11604392 and 11674200), the Changjiang Scholars and Innovative Research Team in Universities of Ministry of Education of China (Grant No. IRT_17R70), the Fund for Shanxi “1331 Project” Key Subjects Construction, and the 111 Project, China (Grant No. D18001). |
Corresponding Authors:
Feng Mei, Gang Chen
E-mail: meifeng@sxu.edu.cn;chengang971@163.com
|
Cite this article:
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂) Probe of topological invariants using quantum walks of a trapped ion in coherent state space 2020 Chin. Phys. B 29 070501
|
[1] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[2] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[3] |
Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
|
[4] |
Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Phys. Rev. Lett. 97 036808
|
[5] |
Lu L, Joannopoulos J D and Soljačić M 2014 Nat. Photon. 8 821
|
[6] |
Lu L, Joannopoulos J D and Soljačić M 2016 Nat. Phys. 12 626
|
[7] |
Ozawa T, Price H M, Amo A et al. 2019 Rev. Mod. Phys. 91 015006
|
[8] |
Goldman N, Budich J C and Zoller P 2016 Nat. Phys. 12 639
|
[9] |
Dauphin A and Goldman N 2013 Phys. Rev. Lett. 111 135302
|
[10] |
Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795
|
[11] |
Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237
|
[12] |
Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N R, Bloch I and Goldman N 2015 Nat. Phys. 11 162
|
[13] |
Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D S, Sengstock K and Weitenberg C 2016 Science 352 1091
|
[14] |
Mittal S, Ganeshan S, Fan J Y, Vaezi A and Hafezi M 2016 Nat. Photon. 10 180
|
[15] |
Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
|
[16] |
Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429
|
[17] |
Kitagawa T 2012 Quantum Inf. Process. 11 1107
|
[18] |
Karski M, Forster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174
|
[19] |
Genske M, Alt W, Steffen A, Werner A H, Werner R F, Meschede D and Alberti A 2013 Phys. Rev. Lett. 110 190601
|
[20] |
Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
|
[21] |
Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
|
[22] |
Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I and Silberhorn C 2010 Phys. Rev. Lett. 104 050502
|
[23] |
Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
|
[24] |
Ryan C A, Laforest M, Boileau J C and Laflamme R 2005 Phys. Rev. A 72 062317
|
[25] |
Asbóth J K 2012 Phys. Rev. B 86 195414
|
[26] |
Asbóth J K and Obuse H 2013 Phys. Rev. B 88 121406
|
[27] |
Tarasinski B, Asbóth J K and Dahlhaus J P 2014 Phys. Rev. A 89 042327
|
[28] |
Obuse H, Asbóth J K, Nishimura Y and Kawakami N 2015 Phys. Rev. B 92 045424
|
[29] |
Edge J M and Asbóth J K 2015 Phys. Rev. B 91 104202
|
[30] |
Asbóth J K 2015 Phys. Rev. A 91 022324
|
[31] |
Rakovszky T and Asbóth J K 2015 Phys. Rev. A 92 052311
|
[32] |
Groh T, Brakhane S, Alt W, Meschede D, Asbóth J K and Alberti A 2016 Phys. Rev. A 94 013620
|
[33] |
Mugel S, Celi A, Massignan P, Asbóth J K, Lewenstein M and Lobo C 2016 Phys. Rev. A 94 023631
|
[34] |
Rakovszky T, Asbóth J K and Alberti A 2017 Phys. Rev. B 95 201407
|
[35] |
Ramasesh V V, Flurin E, Rudner M, Siddiqi I and Yao N Y 2017 Phys. Rev. Lett. 118 13050
|
[36] |
Sajid M, Asbóth J K, Meschede D, Werner R F and Alberti A 2019 Phys. Rev. B 99 214303
|
[37] |
Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E and White A G 2012 Nat. Commun. 3 882
|
[38] |
Cardano F, Maffei M, Massa F, Piccirillo B, Lisio C D, Filippis G D, Cataudella V, Santamato E and Marrucci L 2016 Nat. Commun. 7 11439
|
[39] |
Cardano F, D'Errico A, Dauphin A et al. 2017 Nat. Commun. 8 15516
|
[40] |
Barkhofen S, Nitsche T, Elster F, Lorz L, Gábris A, Jex I and Silberhorn C 2017 Phys. Rev. A 96 033846
|
[41] |
Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y and Siddiqi I 2017 Phys. Rev. X 7 031023
|
[42] |
Xu Y X, Wang Q Q, Pan W W et al. 2018 Phys. Rev. Lett. 120 260501
|
[43] |
Xiao L, Zhan X, Bian Z H et al. 2017 Nat. Phys. 13 1117
|
[44] |
Zhan X, Xiao L, Bian Z H, Wang K K, Qiu X Z, Sanders B C, Yi W and Xue P 2017 Phys. Rev. Lett. 119 130501
|
[45] |
Xiao L, Qiu X Z, Wang K K, Bian Z H, Zhan X, Obuse H, Sanders B C, Yi W and Xue P 2018 Phys. Rev. A 98 063847
|
[46] |
Wang K K, Qiu X Z, Xiao L, Zhan X, Bian Z H, Sanders B C, Yi W and Xue P 2019 Nat. Commun. 10 2293
|
[47] |
Wang K K, Qiu X Z, Xiao L, Zhan X, Bian Z H, Yi W and Xue P 2019 Phys. Rev. Lett. 122 020501
|
[48] |
Xiao L, Wang K K, Zhan X, Bian Z H, Kawabata K, Ueda M, Yi W and Xue P 2019 Phys. Rev. Lett. 123 230401
|
[49] |
Wang B, Chen T and Zhang X 2018 Phys. Rev. Lett. 121 100501
|
[50] |
Chen C, Ding X, Qin J et al. 2018 Phys. Rev. Lett. 121 100502
|
[51] |
Chalabi H, Barik S, Mittal S, Murphy T E, Hafezi M and Waks E 2019 Phys. Rev. Lett. 123 150503
|
[52] |
Ge Z Y and Fan H 2018 arXiv:1804.06994v2[hep-ph] [quant-ph]
|
[53] |
Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602
|
[54] |
Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
|
[55] |
Brownnutt M, Kumph M, Rabl P and Blatt R 2015 Rev. Mod. Phys. 87 1419
|
[56] |
Harlander M, Lechner R, Brownnutt M, Blatt R and Hänsel W 2011 Nature 471 200
|
[57] |
Brown K R, Ospelkaus C, Colombe Y, Wilson A C, Leibfried D and Wineland D J 2011 Nature 471 196
|
[58] |
Maslennikov G, Ding S, Hablützel R, Gan J, Roulet A, Nimmrichter S, Dai J, Scarani V and Matsukevich D 2019 Nat. Commun. 10 202
|
[59] |
Xu Y Y, Zhou F, Chen L, Xie Y, Xue P and Feng M 2012 Chin. Phys. B 21 040304
|
[60] |
Kim K, Chang M S, Korenblit S, Islam R, Edwards E E, Freericks J K, Lin G D, Duan L M and Monroe C 2010 Nature 465 590
|
[61] |
Alberti A, Alt W, Werner R and Meschede D 2014 New J. Phys. 16 123052
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|