Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 034207    DOI: 10.1088/1674-1056/19/3/034207
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Preparation of the four-qubit cluster states in cavity QED and the trapped-ion system

Zheng Xiao-Juan (郑小娟)a)b), Xu Hui(徐慧)a)b), Fang Mao-Fa(方卯发)c), and Zhu Kai-Cheng(朱开成)a)
a School of Material Science and Engineering, Central South University, Changsha 410083, China; b School of Physics Science and Technology, Central South University, Changsha 410083, China; c College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity during the preparation for a four-atom entangled cluster state, and thus the scheme is insensitive to the cavity field states and cavity decay. Assuming that deviation of laser intensity is 0.01 and that of simultaneity for the interaction is 0.01, it shows that the fidelity of the resulting four-atom entangled cluster state is about 0.9886. The scheme can also be used to generate a four-ion entangled cluster state in a hot trapped-ion system. Assuming that deviation of laser intensity is 0.01, it shows that the fidelity of the resulting four-ion entangled cluster state is about 0.9990. Experimental feasibility for achieving this scheme is also discussed.
Keywords:  cavity quantum electrodynamics (QED)      trapped ions      cluster state  
Received:  14 May 2009      Revised:  08 June 2009      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the Postdoctal Foundation of Central South University of China, the Important Program of Hunan Provincial Education Department of China (Grant No.~06A038), Department of Education of Hunan Province of China (Grant No.~06C080), and Hunan Provincial Natural Science Foundation, China (Grant No.~07JJ3013).

Cite this article: 

Zheng Xiao-Juan (郑小娟), Xu Hui(徐慧), Fang Mao-Fa(方卯发), and Zhu Kai-Cheng(朱开成) Preparation of the four-qubit cluster states in cavity QED and the trapped-ion system 2010 Chin. Phys. B 19 034207

[1] Einstein A, Poldolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[3] Vitali D, Fortunato M and Tombesi P 2000 Phys. Rev. Lett. 85 445
[Zheng X J, Fang M F, Cai J W and Liao X P 2006Chin. Phys. 15 2840
[4] Yang M, Zhao Y, Song W and Cao Z L 2005 Phys. Rev. A 71 044302
[5] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[Zheng X J, Cao S, Fang M F and Liao X P 2008 Chin. Phys. B 17 431
[6] Greenberger D M, Horne M A and Zeilinger A In: Kafatos M 1989 Bell'sTheorem, Quantum Theory, and Conceptions of the Universe (Dordrecht: Kluwer)
[Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am.J. Phys. 58 1131
[7] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[8] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[9] Walther P, Aspelmeyer M, Resch K J and Zeilinger A 2005 Phys. Rev. Lett. 95 020403
[10] Scarani V, Acín A, Schenck E andAspelmeyer M 2005 Phys. Rev. A 71 042325
[11] Zou X B and Mathis W 2005 Phys. Rev. A 71 032308
[12] Zheng S B 2006 Phys. Rev. A 73 065802
[13] Yang W X, Zhan Z M and Li J H 2006 Chin. Phys. Lett. 23 120
[14] Zhang X L, Gao K L and Feng M 2006 Phys. Rev. A 74 024303
[15] Zou X B and Mathis W 2005 Phys. Rev. A 72 013809
[16] Ye L, Yu L B and Guo G C 2005 Phys. Rev. A 72 034304
[17] Yang R C, Li H C, Chen M X and Lin X 2006 Chin. Phys. 15 2315
[18] Xiang S H and Song K H 2006 Chin. Phys. Lett. 23 1466
[19] Ye L and Guo G C 2006 Phys. Rev. A 73 029907(E)
[20] Zheng S B 2003 Phys. Rev. A 68 035801
[21] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[22] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[1] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[2] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[3] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[4] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[5] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[6] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[7] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[8] Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states
Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹). Chin. Phys. B, 2018, 27(11): 110302.
[9] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[10] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[11] Multi-ion Mach–Zehnder interferometer with artificial nonlinear interactions
Hu Yan-Min (胡艳敏), Yang Wan-Li (杨万里), Xiao Xing (肖兴), Feng Mang (冯芒), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(3): 034205.
[12] Electronic cluster state entanglement concentration based on charge detection
Liu Jiong (刘炯), Zhao Sheng-Yang (赵圣阳), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波). Chin. Phys. B, 2014, 23(2): 020313.
[13] Efficient generation of two-dimensional cluster states in cavity QED
Zhang Gang (张刚), Zhou Jian (周建), Xue Zheng-Yuan (薛正远). Chin. Phys. B, 2013, 22(4): 040307.
[14] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
[15] Interaction of pair coherent state with a three-level Λ-type atom and generation of a modified Bessel-Gaussian state with a vortex structure
Tang Hui-Qin (唐慧琴), Li Shao-Xin (李绍新), Tang Ying (唐英), Zheng Xiao-Juan (郑小娟), Zhu Kai-Cheng (朱开成). Chin. Phys. B, 2013, 22(2): 020310.
No Suggested Reading articles found!