Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 070501    DOI: 10.1088/1674-1056/ab8893
GENERAL Prev   Next  

Probe of topological invariants using quantum walks of a trapped ion in coherent state space

Ya Meng(蒙雅)1,2, Feng Mei(梅锋)1,2, Gang Chen(陈刚)1,2,3, Suo-Tang Jia(贾锁堂)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Abstract  We present a protocol to realize topological discrete-time quantum walks, which comprise a sequence of spin-dependent flipping displacement operations and quantum coin tossing operations, with a single trapped ion. It is demonstrated that the information of bulk topological invariants can be extracted by measuring the average projective phonon number when the walk takes place in coherent state space. Interestingly, the specific chiral symmetry owned by our discrete-time quantum walks simplifies the measuring process. Furthermore, we prove the robustness of such bulk topological invariants by introducing dynamical disorder and decoherence. Our work provides a simple method to measure bulk topological features in discrete-time quantum walks, which can be experimentally realized in the system of single trapped ions.
Keywords:  topological quantum walk      topological invariant      trapped ion      coherent state space  
Received:  25 February 2020      Revised:  06 April 2020      Accepted manuscript online: 
PACS:  05.40.Fb (Random walks and Levy flights)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Natural National Science Foundation of China (Grant Nos. 11604392 and 11674200), the Changjiang Scholars and Innovative Research Team in Universities of Ministry of Education of China (Grant No. IRT_17R70), the Fund for Shanxi “1331 Project” Key Subjects Construction, and the 111 Project, China (Grant No. D18001).
Corresponding Authors:  Feng Mei, Gang Chen     E-mail:  meifeng@sxu.edu.cn;chengang971@163.com

Cite this article: 

Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂) Probe of topological invariants using quantum walks of a trapped ion in coherent state space 2020 Chin. Phys. B 29 070501

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[4] Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Phys. Rev. Lett. 97 036808
[5] Lu L, Joannopoulos J D and Soljačić M 2014 Nat. Photon. 8 821
[6] Lu L, Joannopoulos J D and Soljačić M 2016 Nat. Phys. 12 626
[7] Ozawa T, Price H M, Amo A et al. 2019 Rev. Mod. Phys. 91 015006
[8] Goldman N, Budich J C and Zoller P 2016 Nat. Phys. 12 639
[9] Dauphin A and Goldman N 2013 Phys. Rev. Lett. 111 135302
[10] Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795
[11] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237
[12] Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N R, Bloch I and Goldman N 2015 Nat. Phys. 11 162
[13] Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D S, Sengstock K and Weitenberg C 2016 Science 352 1091
[14] Mittal S, Ganeshan S, Fan J Y, Vaezi A and Hafezi M 2016 Nat. Photon. 10 180
[15] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
[16] Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429
[17] Kitagawa T 2012 Quantum Inf. Process. 11 1107
[18] Karski M, Forster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174
[19] Genske M, Alt W, Steffen A, Werner A H, Werner R F, Meschede D and Alberti A 2013 Phys. Rev. Lett. 110 190601
[20] Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
[21] Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
[22] Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I and Silberhorn C 2010 Phys. Rev. Lett. 104 050502
[23] Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
[24] Ryan C A, Laforest M, Boileau J C and Laflamme R 2005 Phys. Rev. A 72 062317
[25] Asbóth J K 2012 Phys. Rev. B 86 195414
[26] Asbóth J K and Obuse H 2013 Phys. Rev. B 88 121406
[27] Tarasinski B, Asbóth J K and Dahlhaus J P 2014 Phys. Rev. A 89 042327
[28] Obuse H, Asbóth J K, Nishimura Y and Kawakami N 2015 Phys. Rev. B 92 045424
[29] Edge J M and Asbóth J K 2015 Phys. Rev. B 91 104202
[30] Asbóth J K 2015 Phys. Rev. A 91 022324
[31] Rakovszky T and Asbóth J K 2015 Phys. Rev. A 92 052311
[32] Groh T, Brakhane S, Alt W, Meschede D, Asbóth J K and Alberti A 2016 Phys. Rev. A 94 013620
[33] Mugel S, Celi A, Massignan P, Asbóth J K, Lewenstein M and Lobo C 2016 Phys. Rev. A 94 023631
[34] Rakovszky T, Asbóth J K and Alberti A 2017 Phys. Rev. B 95 201407
[35] Ramasesh V V, Flurin E, Rudner M, Siddiqi I and Yao N Y 2017 Phys. Rev. Lett. 118 13050
[36] Sajid M, Asbóth J K, Meschede D, Werner R F and Alberti A 2019 Phys. Rev. B 99 214303
[37] Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E and White A G 2012 Nat. Commun. 3 882
[38] Cardano F, Maffei M, Massa F, Piccirillo B, Lisio C D, Filippis G D, Cataudella V, Santamato E and Marrucci L 2016 Nat. Commun. 7 11439
[39] Cardano F, D'Errico A, Dauphin A et al. 2017 Nat. Commun. 8 15516
[40] Barkhofen S, Nitsche T, Elster F, Lorz L, Gábris A, Jex I and Silberhorn C 2017 Phys. Rev. A 96 033846
[41] Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y and Siddiqi I 2017 Phys. Rev. X 7 031023
[42] Xu Y X, Wang Q Q, Pan W W et al. 2018 Phys. Rev. Lett. 120 260501
[43] Xiao L, Zhan X, Bian Z H et al. 2017 Nat. Phys. 13 1117
[44] Zhan X, Xiao L, Bian Z H, Wang K K, Qiu X Z, Sanders B C, Yi W and Xue P 2017 Phys. Rev. Lett. 119 130501
[45] Xiao L, Qiu X Z, Wang K K, Bian Z H, Zhan X, Obuse H, Sanders B C, Yi W and Xue P 2018 Phys. Rev. A 98 063847
[46] Wang K K, Qiu X Z, Xiao L, Zhan X, Bian Z H, Sanders B C, Yi W and Xue P 2019 Nat. Commun. 10 2293
[47] Wang K K, Qiu X Z, Xiao L, Zhan X, Bian Z H, Yi W and Xue P 2019 Phys. Rev. Lett. 122 020501
[48] Xiao L, Wang K K, Zhan X, Bian Z H, Kawabata K, Ueda M, Yi W and Xue P 2019 Phys. Rev. Lett. 123 230401
[49] Wang B, Chen T and Zhang X 2018 Phys. Rev. Lett. 121 100501
[50] Chen C, Ding X, Qin J et al. 2018 Phys. Rev. Lett. 121 100502
[51] Chalabi H, Barik S, Mittal S, Murphy T E, Hafezi M and Waks E 2019 Phys. Rev. Lett. 123 150503
[52] Ge Z Y and Fan H 2018 arXiv:1804.06994v2[hep-ph] [quant-ph]
[53] Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602
[54] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[55] Brownnutt M, Kumph M, Rabl P and Blatt R 2015 Rev. Mod. Phys. 87 1419
[56] Harlander M, Lechner R, Brownnutt M, Blatt R and Hänsel W 2011 Nature 471 200
[57] Brown K R, Ospelkaus C, Colombe Y, Wilson A C, Leibfried D and Wineland D J 2011 Nature 471 196
[58] Maslennikov G, Ding S, Hablützel R, Gan J, Roulet A, Nimmrichter S, Dai J, Scarani V and Matsukevich D 2019 Nat. Commun. 10 202
[59] Xu Y Y, Zhou F, Chen L, Xie Y, Xue P and Feng M 2012 Chin. Phys. B 21 040304
[60] Kim K, Chang M S, Korenblit S, Islam R, Edwards E E, Freericks J K, Lin G D, Duan L M and Monroe C 2010 Nature 465 590
[61] Alberti A, Alt W, Werner R and Meschede D 2014 New J. Phys. 16 123052
[1] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[2] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[3] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[4] A new way to construct topological invariants of non-Hermitian systems with the non-Hermitian skin effect
J S Liu(刘建森), Y Z Han(韩炎桢), C S Liu(刘承师). Chin. Phys. B, 2020, 29(1): 010302.
[5] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[6] Demonstration of quantum anti-Zeno effect with a single trapped ion
Man-Chao Zhang(张满超), Wei Wu(吴伟), Lin-Ze He(何林泽), Yi Xie(谢艺), Chun-Wang Wu(吴春旺), Quan Li(黎全), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(9): 090305.
[7] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[8] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[9] Quantum feedback cooling of two trapped ions
Shuo Zhang(张硕), Wei Wu(吴伟), Chun-Wang Wu(吴春旺), Feng-Guang Li(李风光), Tan Li(李坦), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2017, 26(7): 074205.
[10] Static and dynamic properties of polymer brush with topological ring structures: Molecular dynamic simulation
Wu-Bing Wan(万吴兵), Hong-Hong Lv(吕红红), Holger Merlitz(候格), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2016, 25(10): 106101.
[11] Multi-ion Mach–Zehnder interferometer with artificial nonlinear interactions
Hu Yan-Min (胡艳敏), Yang Wan-Li (杨万里), Xiao Xing (肖兴), Feng Mang (冯芒), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(3): 034205.
[12] Linear ion trap imperfection and the compensation of excess micromotion
Xie Yi(谢艺), Wan Wei(万威), Zhou Fei(周飞), Chen Liang(陈亮), Li Chao-Hong(李朝红), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(6): 063201.
[13] Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Chen Liang(陈亮) Xie Yi(谢艺), Xue Peng(薛鹏), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(4): 040304.
[14] Preparation of the four-qubit cluster states in cavity QED and the trapped-ion system
Zheng Xiao-Juan (郑小娟), Xu Hui(徐慧), Fang Mao-Fa(方卯发), and Zhu Kai-Cheng(朱开成). Chin. Phys. B, 2010, 19(3): 034207.
[15] Two-qutrit maximally entangled states prepared via adiabatic passage in ion-trapped system
Huang Bin(黄彬), Lin Xia(林霞), Lin Hui(林慧), Cai Zhen-Hua(蔡振华), and Yang Rong-Can(杨榕灿). Chin. Phys. B, 2010, 19(12): 124206.
No Suggested Reading articles found!