Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 106101    DOI: 10.1088/1674-1056/25/10/106101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Static and dynamic properties of polymer brush with topological ring structures: Molecular dynamic simulation

Wu-Bing Wan(万吴兵)1,2, Hong-Hong Lv(吕红红)1,2, Holger Merlitz(候格)1, Chen-Xu Wu(吴晨旭)1,2
1 Institute of Softmatter and Biometrics, Xiamen University, Xiamen 361005, China;
2 Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
Abstract  

By defining a topological constraint value (rn), the static and dynamic properties of a polymer brush composed of moderate or short chains with different topological ring structures are studied using molecular dynamics simulation, and a comparison with those of linear polymer brush is also made. For the center-of-mass height of the ring polymer brush scaled by chain length hNν, there is no significant difference of exponent from that of a linear brush in the small topological constraint regime. However, as the topological constraint becomes stronger, one obtains a smaller exponent. It is found that there exists a master scaling power law of the total stretching energy scaled by chain length N for moderate chain length regime, Feneν, for ring polymer brushes, but with a larger exponent ν than 5/6, indicating an influence of topological constraint to the dynamic properties of the system. A topological invariant of free energy scaled by <c>5/4 is found.

Keywords:  ring polymer      topological invariant      scaling  
Received:  14 March 2016      Revised:  17 June 2016      Accepted manuscript online: 
PACS:  61.41.+e (Polymers, elastomers, and plastics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374243 and 11574256).

Corresponding Authors:  Chen-Xu Wu     E-mail:  cxwu@xmu.edu.cn

Cite this article: 

Wu-Bing Wan(万吴兵), Hong-Hong Lv(吕红红), Holger Merlitz(候格), Chen-Xu Wu(吴晨旭) Static and dynamic properties of polymer brush with topological ring structures: Molecular dynamic simulation 2016 Chin. Phys. B 25 106101

[1] de Gennes P G 1980 Macromolecules 13 1069
[2] Milner S T 1991 Science 251 905
[3] Netz R R and Andelman D 2003 Phys. Rep. 380 1
[4] Jun S and Mulder B 2006 Proc. Natl. Acad. Sci. USA 103 12388
[5] des Cloizeaux J 1974 Phys. Rev. A 10 1665
[6] van Rensburg E J J 2009 J. Phys. A: Math. Theor. 42 323001
[7] Deguchi T and Tsurusaki K 1997 Phys. Rev. E 55 6245
[8] Shimamura M K and Deguchi T 2002 Phys. Rev. E 65 051802
[9] Cates M E and Deutsch J M 1986 J. Phys. 47 2121
[10] Rubinstein M 1986 Phys. Rev. Lett. 57 3023
[11] Hur K, winkler R F and Yoon D Y 2006 Macromolecules 39 3975
[12] Ida D, Nakatomi D and Yoshizaki T 2010 Polym. J. 42 735
[13] Dobay A, Dubochet J, Millett K, sottas P E and Stasiak A 2003 Proc. Natl. Acad. Sci. USA 100 5611
[14] Roovers J and Toporowski P M 1983 Macromolecules 16 843
[15] McKenna G B, Hostetter B J, Hadjichristidis N, Fetters L J and Plazek D J 1989 Macromolecules 22 1834
[16] Cho D, Park S, Kwon K and Chan T 2001 Macromolecules 34 7570
[17] Takano A, Kushida Y, Ohta Y, Masuoka K and Matsushita Y 2009 Polymer 50 1300
[18] Takano A, Ohta Y, Masuoka K, Matsubara K, Nakano T, Hieno A, Itakura M, Takahashi K, Kinugasa S, Kawaguchi D, Takahashi Y and Matsushita Y 2012 Macromolecules 45 369
[19] Liu Y and Chakraborty B 2008 Phys. Biol. 5 026004
[20] Forgan R S, Sauvage J P and Stoddart J F 2011 Chem. Rev. 111 5434
[21] Pakula T and Geyler S 1988 Macromolecules 21 1665
[22] Brown S and Szamel G 1998 J. Chem. Phys. 109 6184
[23] Muller M, Wittmer J P and Cates M E 2000 Phys. Rev. E 61 4078
[24] Muller M, Wittmer J P and Barrat J L 2000 Europhys. Lett. 52 406
[25] Vettorel T, Grosberg A Y and Kremer K 2009 Phys. Biol. Jpn. 6 025013
[26] Takano A 2007 Polm. Prepr. Jpn. 56 2424
[27] He S Z, Merlitz H, Su C F and Wu C X 2013 Chin. Phys. B 22 016101
[28] Sakaue T 2011 Phys. Rev. Lett. 106 167802
[29] Suzuki J, Takano A and Matsushita Y 2013 J. Chem. Phys. 138 024902
[30] Trefz B and Virnau P 2015 J. Phys.: Condens. Matter 27 354110
[31] Flikkema E and Brinke G 2000 J. Chem. Phys. 113 11393
[32] Plimpton S J 1995 J. Comput. Phys. 7 1
[33] Milner S T, Witten T A and Cates M 1988 Macromolecules 21 2610
[34] Alexander 1977 J. Phys. (Paris) 38 977
[1] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[2] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[3] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[4] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[5] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[6] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[7] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[8] A new way to construct topological invariants of non-Hermitian systems with the non-Hermitian skin effect
J S Liu(刘建森), Y Z Han(韩炎桢), C S Liu(刘承师). Chin. Phys. B, 2020, 29(1): 010302.
[9] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[10] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[11] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[12] Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal
Yuye Wang(王与烨), Yuchen Ren(任宇琛), Degang Xu(徐德刚), Longhuang Tang(唐隆煌), Yixin He(贺奕焮), Ci Song(宋词), Linyu Chen(陈霖宇), Changzhao Li(李长昭), Chao Yan(闫超), Jianquan Yao(姚建铨). Chin. Phys. B, 2018, 27(11): 114213.
[13] Ultrasound wave propagation in glass-bead packing under isotropic compression and uniaxial shear
Zhi-Gang Zhou(周志刚), Yi-Min Jiang(蒋亦民), Mei-Ying Hou(厚美瑛). Chin. Phys. B, 2017, 26(8): 084502.
[14] Scaling of weighted spectral distribution in weighted small-world networks
Bo Jiao(焦波), Xiao-Qun Wu(吴晓群). Chin. Phys. B, 2017, 26(2): 028901.
[15] Equivalent electron correlations in nonsequential double ionization of noble atoms
Shansi Dong(董善思), Qiujing Han(韩秋静), Jingtao Zhang(张敬涛). Chin. Phys. B, 2017, 26(2): 023202.
No Suggested Reading articles found!