|
|
Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system |
Li-Li Wang(王丽丽)1, Wen-Jun Liu(刘文军)1,2 |
1 State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract A coupled (2+1)-dimensional variable coefficient Ginzburg-Landau equation is studied. By virtue of the modified Hirota bilinear method, the bright one-soliton solution of the equation is derived. Some phenomena of soliton propagation are analyzed by setting different dispersion terms. The influences of the corresponding parameters on the solitons are also discussed. The results can enrich the soliton theory, and may be helpful in the manufacture of optical devices.
|
Received: 22 March 2020
Revised: 19 April 2020
Accepted manuscript online:
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674036 and 11875008), Beijing Youth Top Notch Talent Support Program, China (Grant No. 2017000026833ZK08), Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, Grant No. IPOC2019ZZ01), Fundamental Research Funds for the Central Universities, China (Grant No. 500419305). |
Corresponding Authors:
Wen-Jun Liu
E-mail: jungliu@bupt.edu.cn
|
Cite this article:
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军) Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system 2020 Chin. Phys. B 29 070502
|
[1] |
Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
|
[2] |
Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 171
|
[3] |
Xu W C, Guo Q and Liu S H 1997 Chin. Phys. Lett. 14 298
|
[4] |
Ikeda H, Matsumoto M and Hasegawa A 1997 J. Opt. Soc. Am. B 14 136
|
[5] |
Kishore K, Lowry C and Lee C H 1999 Opt. Lett. 24 445
|
[6] |
Vinoj M N, Kuriakose V C and Porsezian K 2001 Chaos Soliton. Frac. 12 2569
|
[7] |
Hernandez T C, Villargan V E, Serkin V N, Aguero G M, Belyaeva T L, Pena M R and Morales L L 2005 Quantum Electron. 35 778
|
[8] |
Tenorio C H, Vargas E V, Serkin V N, Granados M A, Belyaeva T L, Moreno R P and Lara L M 2005 Quantum Electron. 35 929
|
[9] |
Zhou Z, Yu H Y, Ao S M and Yan J R 2010 Commun. Theor. Phys. 54 98
|
[10] |
Liu W J, Pang L H, Han H N, Shen Z W, Lei M, Teng H and Wei Z Y 2016 Photon. Res. 4 111
|
[11] |
Liu W J, Yu W T, Yang C Y, Liu M L, Zhang Y J and Lei M 2017 Nonlinear Dyn. 89 2933
|
[12] |
Zhang Y J, Yang C Y, Yu W T, Liu M L, Ma G L and Liu W J 2018 Opt. Quant. Electron. 50 295
|
[13] |
Yu W T, Zhou Q, Mirzazadeh M, Liu W J and Biswas A 2019 J. Adv. Res. 15 69
|
[14] |
Zhang Z, Yang S X and Li B 2019 Chin. Phys. Lett. 36 120501
|
[15] |
Roy S and Bhadra S 2008 Commun. Nonlinear. Sci. 13 2157
|
[16] |
Mollenauer L F, Stolen R H, Gordon J P 1980 Phys. Rev. Lett. 45 1095
|
[17] |
Liu X Y, Luan Z T, Zhou Q, Liu W J and Biswas A 2019 Chin. J. Phys. 61 310
|
[18] |
Liu W J, Zhang Y J, Wazwaz A M and Zhou Q 2019 Appl. Math. Comput. 361 325
|
[19] |
Blow K J, Doran N J and Nayar B K 1989 Opt. Lett. 14 754
|
[20] |
Jacob J M, Golovchenko E A, Pilipetskii A N, Carter G M and Menyuk C R 1997 IEEE Photonic. Tech. Lett. 9 130
|
[21] |
Matera F and Settembre M 1997 Opt. Quant. Electron. 29 21
|
[22] |
Kohl R, Biswas A, Milovic D and Zerrad E 2008 Opt. Laser. Technol. 40 647
|
[23] |
Wang Y Y, Zhang Y P and Dai C Q 2016 Nonlinear Dyn. 83 1331
|
[24] |
Yepez-Martinez H and Gomez-Aguilar J F 2019 Eur. Phys. J. Plus 134 93
|
[25] |
Wazwaz A M 2017 Math. Method Appl. Sci. 40 4128
|
[26] |
Liu W J, Zhang Y J, Luan Z T, Zhou Q, Mirzazadeh M, Ekici M and Biswas A 2019 Nonlinear Dyn. 96 729
|
[27] |
Liu X Y, Liu W J, Triki H, Zhou Q and Biswas A 2019 Nonlinear Dyn. 96 801
|
[28] |
Zhang Z, Yang X Y, Li W T and Li B 2019 Chin. Phys. B 28 110201
|
[29] |
Jiao X Y, Jia M and An H L 2019 Acta. Phys. Sin. 68 140201 (in Chinese)
|
[30] |
Cen F J, Zhao Y N, Fang S Y, Meng H and Yu J 2019 Chin. Phys. B 28 090201
|
[31] |
Xu T and Chen Y 2018 Commun Nonlinear Sci Numer Simul 57 276
|
[32] |
Zhang Z, Yang X Y and Li B 2020 Appl. Math. Lett. 103 106168
|
[33] |
Dong J J, Li B and Yuen M 2020 Commun. Theor. Phys. 72 025002
|
[34] |
Yang C Y, Liu W J, Zhou Q, Mihalache D and Malomed B A 2019 Nonlinear Dyn. 95 369
|
[35] |
Kudryashov N A 2020 Appl. Math. Comput. 371 124972
|
[36] |
Saut J C and Segata J I 2020 J. Math. Anal. Appl. 483 123638
|
[37] |
Sharma D, Singla R K and Goyal K 2019 Int. J. Mod. Phys. A 30 1950101
|
[38] |
Herr S and Sohinger V 2019 Commun. Contemp. Math. 21 1850058
|
[39] |
D'Ambroise J and Kevrekidis P G 2019 Phys. Scr. 94 115203
|
[40] |
Wang B, Zhang Z and Li B A 2020 Chin. Phys. Lett. 37 030501
|
[41] |
Liu Y K and Li B A 2017 Chin. Phys. Lett. 34 010202
|
[42] |
Meng L Z, Qin Y H, Zhao L C and Yang Z Y 2019 Chin. Phys. B 28 060502
|
[43] |
Silem A, Zhang C and Zhang D J 2019 Chin. Phys. B 28 020202
|
[44] |
Chen M, Li B and Yu Y X 2019 Commun. Theor. Phys. 71 27
|
[45] |
Tasbozan O, Kurt A and Tozar A 2019 Appl. Phys. B 125 104
|
[46] |
Segel L A 1969 J. Fluid. Mech. 38 203
|
[47] |
Newell A C and Whitehead J A 1969 J. Fluid. Mech. 38 279
|
[48] |
Huang L G, Pang L H, Wong P, Li Y Q, Bai S Y, Lei M and Liu W J 2016 Ann. Phys. 528 493
|
[49] |
Ouyang Q and Flesselles J M 1996 Nature 379 143
|
[50] |
Gradov O M, Stenflo L and Yu M Y 1993 Phys. Fluids. B 5 1922
|
[51] |
Dubin D H E and O'Neil T M 1999 Rev. Mod. Phys. 71 87
|
[52] |
Qu Q X, Zhang L, Liu X Y, Qi F H and Meng X H 2018 Mod. Phys. Lett. B 32 1850286
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|