Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 070502    DOI: 10.1088/1674-1056/ab90ea
GENERAL Prev   Next  

Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system

Li-Li Wang(王丽丽)1, Wen-Jun Liu(刘文军)1,2
1 State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  A coupled (2+1)-dimensional variable coefficient Ginzburg-Landau equation is studied. By virtue of the modified Hirota bilinear method, the bright one-soliton solution of the equation is derived. Some phenomena of soliton propagation are analyzed by setting different dispersion terms. The influences of the corresponding parameters on the solitons are also discussed. The results can enrich the soliton theory, and may be helpful in the manufacture of optical devices.
Keywords:  soliton      modified Hirota bilinear method      Ginzburg-Landau equation      bright soliton solution  
Received:  22 March 2020      Revised:  19 April 2020      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674036 and 11875008), Beijing Youth Top Notch Talent Support Program, China (Grant No. 2017000026833ZK08), Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, Grant No. IPOC2019ZZ01), Fundamental Research Funds for the Central Universities, China (Grant No. 500419305).
Corresponding Authors:  Wen-Jun Liu     E-mail:  jungliu@bupt.edu.cn

Cite this article: 

Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军) Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system 2020 Chin. Phys. B 29 070502

[1] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[2] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 171
[3] Xu W C, Guo Q and Liu S H 1997 Chin. Phys. Lett. 14 298
[4] Ikeda H, Matsumoto M and Hasegawa A 1997 J. Opt. Soc. Am. B 14 136
[5] Kishore K, Lowry C and Lee C H 1999 Opt. Lett. 24 445
[6] Vinoj M N, Kuriakose V C and Porsezian K 2001 Chaos Soliton. Frac. 12 2569
[7] Hernandez T C, Villargan V E, Serkin V N, Aguero G M, Belyaeva T L, Pena M R and Morales L L 2005 Quantum Electron. 35 778
[8] Tenorio C H, Vargas E V, Serkin V N, Granados M A, Belyaeva T L, Moreno R P and Lara L M 2005 Quantum Electron. 35 929
[9] Zhou Z, Yu H Y, Ao S M and Yan J R 2010 Commun. Theor. Phys. 54 98
[10] Liu W J, Pang L H, Han H N, Shen Z W, Lei M, Teng H and Wei Z Y 2016 Photon. Res. 4 111
[11] Liu W J, Yu W T, Yang C Y, Liu M L, Zhang Y J and Lei M 2017 Nonlinear Dyn. 89 2933
[12] Zhang Y J, Yang C Y, Yu W T, Liu M L, Ma G L and Liu W J 2018 Opt. Quant. Electron. 50 295
[13] Yu W T, Zhou Q, Mirzazadeh M, Liu W J and Biswas A 2019 J. Adv. Res. 15 69
[14] Zhang Z, Yang S X and Li B 2019 Chin. Phys. Lett. 36 120501
[15] Roy S and Bhadra S 2008 Commun. Nonlinear. Sci. 13 2157
[16] Mollenauer L F, Stolen R H, Gordon J P 1980 Phys. Rev. Lett. 45 1095
[17] Liu X Y, Luan Z T, Zhou Q, Liu W J and Biswas A 2019 Chin. J. Phys. 61 310
[18] Liu W J, Zhang Y J, Wazwaz A M and Zhou Q 2019 Appl. Math. Comput. 361 325
[19] Blow K J, Doran N J and Nayar B K 1989 Opt. Lett. 14 754
[20] Jacob J M, Golovchenko E A, Pilipetskii A N, Carter G M and Menyuk C R 1997 IEEE Photonic. Tech. Lett. 9 130
[21] Matera F and Settembre M 1997 Opt. Quant. Electron. 29 21
[22] Kohl R, Biswas A, Milovic D and Zerrad E 2008 Opt. Laser. Technol. 40 647
[23] Wang Y Y, Zhang Y P and Dai C Q 2016 Nonlinear Dyn. 83 1331
[24] Yepez-Martinez H and Gomez-Aguilar J F 2019 Eur. Phys. J. Plus 134 93
[25] Wazwaz A M 2017 Math. Method Appl. Sci. 40 4128
[26] Liu W J, Zhang Y J, Luan Z T, Zhou Q, Mirzazadeh M, Ekici M and Biswas A 2019 Nonlinear Dyn. 96 729
[27] Liu X Y, Liu W J, Triki H, Zhou Q and Biswas A 2019 Nonlinear Dyn. 96 801
[28] Zhang Z, Yang X Y, Li W T and Li B 2019 Chin. Phys. B 28 110201
[29] Jiao X Y, Jia M and An H L 2019 Acta. Phys. Sin. 68 140201 (in Chinese)
[30] Cen F J, Zhao Y N, Fang S Y, Meng H and Yu J 2019 Chin. Phys. B 28 090201
[31] Xu T and Chen Y 2018 Commun Nonlinear Sci Numer Simul 57 276
[32] Zhang Z, Yang X Y and Li B 2020 Appl. Math. Lett. 103 106168
[33] Dong J J, Li B and Yuen M 2020 Commun. Theor. Phys. 72 025002
[34] Yang C Y, Liu W J, Zhou Q, Mihalache D and Malomed B A 2019 Nonlinear Dyn. 95 369
[35] Kudryashov N A 2020 Appl. Math. Comput. 371 124972
[36] Saut J C and Segata J I 2020 J. Math. Anal. Appl. 483 123638
[37] Sharma D, Singla R K and Goyal K 2019 Int. J. Mod. Phys. A 30 1950101
[38] Herr S and Sohinger V 2019 Commun. Contemp. Math. 21 1850058
[39] D'Ambroise J and Kevrekidis P G 2019 Phys. Scr. 94 115203
[40] Wang B, Zhang Z and Li B A 2020 Chin. Phys. Lett. 37 030501
[41] Liu Y K and Li B A 2017 Chin. Phys. Lett. 34 010202
[42] Meng L Z, Qin Y H, Zhao L C and Yang Z Y 2019 Chin. Phys. B 28 060502
[43] Silem A, Zhang C and Zhang D J 2019 Chin. Phys. B 28 020202
[44] Chen M, Li B and Yu Y X 2019 Commun. Theor. Phys. 71 27
[45] Tasbozan O, Kurt A and Tozar A 2019 Appl. Phys. B 125 104
[46] Segel L A 1969 J. Fluid. Mech. 38 203
[47] Newell A C and Whitehead J A 1969 J. Fluid. Mech. 38 279
[48] Huang L G, Pang L H, Wong P, Li Y Q, Bai S Y, Lei M and Liu W J 2016 Ann. Phys. 528 493
[49] Ouyang Q and Flesselles J M 1996 Nature 379 143
[50] Gradov O M, Stenflo L and Yu M Y 1993 Phys. Fluids. B 5 1922
[51] Dubin D H E and O'Neil T M 1999 Rev. Mod. Phys. 71 87
[52] Qu Q X, Zhang L, Liu X Y, Qi F H and Meng X H 2018 Mod. Phys. Lett. B 32 1850286
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[5] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[6] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[7] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[8] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[9] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[10] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[11] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[12] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[13] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[14] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!