Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 063201    DOI: 10.1088/1674-1056/21/6/063201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Linear ion trap imperfection and the compensation of excess micromotion

Xie Yi(谢艺)a)b), Wan Wei(万威)a)b), Zhou Fei(周飞)a), Chen Liang(陈亮)a), Li Chao-Hong(李朝红) c), and Feng Mang(冯芒)a)†
a. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, and Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China;
b. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China;
c. State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  Quantum computing requires ultracold ions in a ground vibrational state, which is achieved by sideband cooling. We report our recent efforts towards the Lamb-Dicke regime which is a prerequisite of sideband cooling. We first analyse the possible imperfection in our linear ion trap setup and then demonstrate how to suppress the imperfection by compensating the excess micromotion of the ions. The ions, after the micromotion compensation, are estimated to be very close to the Doppler-cooling limit.
Keywords:  trapped ions      micromotion      compensation  
Received:  30 November 2011      Revised:  05 January 2012      Accepted manuscript online: 
PACS:  32.80.Wr (Other multiphoton processes)  
  03.67.Lx (Quantum computation architectures and implementations)  
  32.70.Jz (Line shapes, widths, and shifts)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 10974225 and 11104325), the NCETPC (Grant No. NCET-10-0850), the Fundamental Research Funds for Central Universities of China, and the National Fundamental Research Program of China (Grant No. 2012CB922102).
Corresponding Authors:  Feng Mang     E-mail:  mangfeng@wipm.ac.cn

Cite this article: 

Xie Yi(谢艺), Wan Wei(万威), Zhou Fei(周飞), Chen Liang(陈亮), Li Chao-Hong(李朝红), and Feng Mang(冯芒) Linear ion trap imperfection and the compensation of excess micromotion 2012 Chin. Phys. B 21 063201

[1] Blatt R and Wineland D J 2008 Nature 453 1008
[2] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Haensel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506
[3] Zheng X J, Cao S, Fang M F and Liao X P 2008 Chin. Phys. B 17 431
[4] Zheng S B 2005 Chin. Phys. 11 2222
[5] Xu Y Y, Zhou F, Zhang X L and Feng M 2010 Chin. Phys. B 19 090317
[6] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[7] Stenholm S 1986 Rev. Mod. Phys. 58 69
[8] Wineland D J and Itano W M 1979 Phys. Rev. D 20 1952
[9] Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J and Gould P 1995 Phys. Rev. Lett. 75 4011
[10] Xie Y, Zhou F, Chen L, Wan W and Feng M 2011 Chin. Phys. Lett. 28 093201
[11] Zhou F, Xie Y, Xu Y Y, Huang X R and Feng M 2010 Chin. Phys. B 19 113206
[12] Zhou F, Xie Y, Xu Y Y, Huang X R and Feng M 2010 Chin. Phys. Lett. 27 123203
[13] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[14] Steane A 1997 Appl. Phys. B 64 623
[15] James D F V 1998 Appl. Phys. B 66 181
[16] Donald C 2000 Development of an Ion Trap Quantum Information Processor Ph. D. Thesis (Oxford: University of Oxford)
[17] Urabe S, Watanabe M, Imajo H, Hayasaka K, Tanaka U and Ohmukai R 1998 Appl. Phys. B 67 223
[18] Nagourney W, Janik G and Dehmelt H 1983 Proc. Natl. Acad. Sci. USA 88 643
[19] Wineland D J 1987 Phys. Rev. A 36 2220
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[4] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Real-time frequency transfer system over ground-to-satellite link based on carrier-phase compensation at 10-16 level
Hui-Jian Liang(梁慧剑), Shi-Guang Wang(王时光), Yu Bai(白钰), Si-Chen Sun(孙思忱), and Li-Jun Wang(王力军). Chin. Phys. B, 2021, 30(8): 080601.
[7] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[8] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[9] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[10] High gain fiber-solid hybrid double-passing end-pumped Nd: YVO4 picosecond amplifier with high beam quality
Xueyan Dong(董雪岩), Pingxue Li(李平雪), Shun Li(李舜), Dongsheng Wang(王东生). Chin. Phys. B, 2020, 29(5): 054207.
[11] Magnetic characterization of a thin Co2MnSi/L10–MnGa synthetic antiferromagnetic bilayer prepared by MBE
Shan Li(黎姗), Jun Lu(鲁军)†, Si-Wei Mao(毛思玮), Da-Hai Wei(魏大海), and Jian-Hua Zhao(赵建华). Chin. Phys. B, 2020, 29(10): 107501.
[12] Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal
Ding Yu(余丁), Guiying Shen(沈桂英), Hui Xie(谢辉), Jingming Liu(刘京明), Jing Sun(孙静), Youwen Zhao(赵有文). Chin. Phys. B, 2019, 28(5): 057102.
[13] Improvement of 2.79-μm laser performance on laser diode side-pumped GYSGG/Er,Pr: GYSGG bonding rod with concave end-faces
Xu-Yao Zhao(赵绪尧), Dun-Lu Sun(孙敦陆), Jian-Qiao Luo(罗建乔), Hui-Li Zhang(张会丽), Zhong-Qing Fang(方忠庆), Cong Quan(权聪), Lun-Zhen Hu(胡伦珍), Zhi-Yuan Han(韩志远), Mao-Jie Cheng(程毛杰), Shao-Tang Yin(殷绍唐). Chin. Phys. B, 2019, 28(11): 114208.
[14] Polymer/silica hybrid waveguide Y-branch power splitter with loss compensation based on NaYF4: Er3+, Yb3+ nanocrystals
Yue-Wu Fu(符越吾), Tong-He Sun(孙潼鹤), Mei-Ling Zhang(张美玲), Xu-Cheng Zhang(张绪成), Fei Wang(王菲), Da-Ming Zhang(张大明). Chin. Phys. B, 2019, 28(10): 104206.
[15] Polymer waveguide thermo-optical switch with loss compensation based on NaYF4: 18% Yb3+, 2% Er3+ nanocrystals
Gui-Chao Xing(邢桂超), Mei-Ling Zhang(张美玲), Tong-He Sun(孙潼鹤), Yue-Wu Fu(符越吾), Ya-Li Huang(黄雅莉), Jian Shao(邵健), Jing-Rong Liu(刘静蓉), Fei Wang(王菲), Da-Ming Zhang(张大明). Chin. Phys. B, 2018, 27(11): 114218.
No Suggested Reading articles found!