Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 034205    DOI: 10.1088/1674-1056/23/3/034205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multi-ion Mach–Zehnder interferometer with artificial nonlinear interactions

Hu Yan-Min (胡艳敏)a, Yang Wan-Li (杨万里)b, Xiao Xing (肖兴)c, Feng Mang (冯芒)b, Li Chao-Hong (李朝红)d
a Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China;
b State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, and Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China;
c College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China;
d State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  We propose a method to implement a Mach–Zehnder interferometry based upon a string of trapped ions with artificial nonlinear interactions. By manipulating the coupling strength between two involved internal states of the ions, we could achieve the beam splitting/recombination with NOON states. Using current techniques for manipulating trapped ions, we discuss the experimental feasibility of our scheme and analyze some undesired uncertainty under realistic experimental environment.
Keywords:  Mach–Zehnder interferometer      trapped ions      nonlinear interactions  
Received:  27 June 2013      Revised:  12 August 2013      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  06.30.Ft (Time and frequency)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the Special Foundation for Theoretical Physics Research Program of China (Grant No. 11347152), the Startup Funds for Scientific Research of Civil Aviation University of China (Grant No. 2012QD13X), the Special Funds of the National Natural Science Foundation of China (Grant No. 11247006), the National Basic Research Program of China (Grants Nos. 2012CB821305 and 2012CB922102), the National Natural Science Foundation of China (Grant Nos. 11075223 and 11004226), and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-10-0850).
Corresponding Authors:  Feng Mang, Li Chao-Hong     E-mail:  mangfeng@wipm.ac.cn;chleecn@gmail.com

Cite this article: 

Hu Yan-Min (胡艳敏), Yang Wan-Li (杨万里), Xiao Xing (肖兴), Feng Mang (冯芒), Li Chao-Hong (李朝红) Multi-ion Mach–Zehnder interferometer with artificial nonlinear interactions 2014 Chin. Phys. B 23 034205

[1] Huesmann R, Balzer C, Courteille P, Neuhauser W and Toschek P E 1999 Phys. Rev. Lett. 82 1611
[2] Leibfried D, DeMarco B, Meyer V, Rowe M, Ben-Kish A, Britton J, Itano W M, Jelenkovi′c B, Langer C, Rosenband T and Wineland D J 2002 Phys. Rev. Lett. 89 247901
[3] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649
[4] Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, ItanoWM,Wineland D J and Monroe C 2000 Nature 404 256
[5] Leibfried D, Barrett M D, Schaetz T, Britton J, Chiaverini J, Itano W M, Jost J D, Langer C and Wineland D 2004 Science 304 1476
[6] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[7] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[8] Shang Y N, Wang D, Yan Z H, Wang W Z, Jia X J and Peng K C 2008 Acta Phys. Sin. 57 3514 (in Chinese)
[9] Sun Q Z, Liu D M and Wang J 2007 Acta Phys. Sin. 56 5903 (in Chinese)
[10] Lee C 2006 Phys. Rev. Lett. 97 150402
[11] Lee C, Huang J, Deng H, Dai H and Xu J 2012 Front. Phys. 7 109
[12] Hu Y M, Feng M and Lee C 2012 Phys. Rev. A 85 043604
[13] Lee P J, Brickman K A, Deslauriers L, Haljan P C, Duan L M and Monroe C 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S371
[14] Porras D and Cirac J I 2004 Phys. Rev. Lett. 92 207901
[15] Friedenauer A, Schmitz H, Glueckert J T, Porras D and Schaetz T 2008 Nat. Phys. 4 757
[16] Arecchi F T, Courtens E, Gilmore R and Thomas H 1972 Phys. Rev. A 6 2211
[17] Zhang W M, Feng D H and Gilmore R 1990 Rev. Mod. Phys. 62 867
[18] Lee C, Hai W, Shi L and Gao K 2004 Phys. Rev. A 69 033611
[19] Lee C 2009 Phys. Rev. Lett. 102 070401
[20] Zibold T, Nicklas E, Gross C and OberthalerMK 2010 Phys. Rev. Lett. 105 204101
[21] Islam R, Edwards E E, Kim K, Korenblit S, Noh C, Carmichael H, Lin G D, Duan L M, Wang C C J, Freericks J K and Monroe C 2011 Nat. Commun. 2 377
[22] Home J P, McDonnell M J, Lucas D M, Imreh G, Keitch B C, Szwer D J, Thomas N R, Webster S C, Stacey D N and Steane A M 2006 New J. Phys. 8 188
[23] Kaler F S, Gulde S, Riebe M, Deuschle T, Kreuter A, Lancaster G, Becher C, Eschner J, Häffner H and Blatt R 2003 J. Phys. B: At. Mol. Opt. Phys. 36 623
[24] Shaji A and Caves C M 2007 Phys. Rev. A 76 032111
[25] Dorner U, Demkowicz-Dobrzanski R, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. Lett. 102 040403
[26] Demkowicz-Dobrzanski R, Dorner U, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. A 80 013825
[27] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hänsel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506
[28] Pellizzari T 1997 Phys. Rev. Lett. 79 5242
[29] Wineland D J and Leibfried D 2011 Laser Phys. Lett. 8 175
[30] Yang W X, Li J H, Jin L X and Zhan Z M 2004 Chin. Phys. Lett. 21 1745
[31] Feng M, Luo X, Zhu X, Shi L and Y M 1998 Chin. Phys. 7 488
[32] Law C K, Ng H T and Leung P T 2001 Phys. Rev. A 63 055601
[33] Lee C, Fu L B and Kivshar Y S 2008 Europhys. Lett. 81 60006
[34] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[35] Braunstein S L, Caves C M and Milburn G J 1996 Ann. Phys. 247 135
[1] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[2] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[3] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[4] Linear ion trap imperfection and the compensation of excess micromotion
Xie Yi(谢艺), Wan Wei(万威), Zhou Fei(周飞), Chen Liang(陈亮), Li Chao-Hong(李朝红), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(6): 063201.
[5] Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Chen Liang(陈亮) Xie Yi(谢艺), Xue Peng(薛鹏), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(4): 040304.
[6] Preparation of the four-qubit cluster states in cavity QED and the trapped-ion system
Zheng Xiao-Juan (郑小娟), Xu Hui(徐慧), Fang Mao-Fa(方卯发), and Zhu Kai-Cheng(朱开成). Chin. Phys. B, 2010, 19(3): 034207.
[7] Two-qutrit maximally entangled states prepared via adiabatic passage in ion-trapped system
Huang Bin(黄彬), Lin Xia(林霞), Lin Hui(林慧), Cai Zhen-Hua(蔡振华), and Yang Rong-Can(杨榕灿). Chin. Phys. B, 2010, 19(12): 124206.
[8] Measurement of the secular motion frequency and the space charge density in the linear ion trap
Zhou Fei(周飞), Xie Yi(谢艺), Xu You-Yang(徐酉阳), Huang Xue-Ren(黄学人), and Feng Mang(冯芒). Chin. Phys. B, 2010, 19(11): 113206.
[9] Quantum logic gates with two-level trapped ions beyond Lamb--Dicke limit
Zheng Xiao-Juan(郑小娟), Luo Yi-Min(罗益民), and Cai Jian-Wu(蔡建武). Chin. Phys. B, 2009, 18(4): 1352-1356.
[10] Scheme for the implementation of 1→3 optimal phase-covariant quantum cloning in ion-trap systems
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), Huang Zhi-Ping(黄志平), and Xie Hong(谢鸿). Chin. Phys. B, 2008, 17(3): 967-970.
[11] Generation of unconventional geometric phase gates in ion trap-optical cavity system by squeezed operators
Zhang Ying-Qiao(张英俏), Jin Xing-Ri(金星日), and Zhang Shou(张寿). Chin. Phys. B, 2008, 17(2): 424-430.
[12] Scheme for implementing quantum dense coding with four-particle decoherence-free states in an ion trap
Zheng Xiao-Juan(郑小娟), Cao Shuai(曹帅), Fang Mao-Fa(方卯发), and Liao Xiang-Ping(廖湘萍). Chin. Phys. B, 2008, 17(2): 431-434.
[13] Cluster states prepared by using hot trapped ions
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), and Huang Zhi-Ping(黄志平). Chin. Phys. B, 2007, 16(8): 2219-2223.
[14] One-step discrimination scheme on N-particle Greenberger--Horne--Zeilinger bases
Wang Xin-Wen(汪新文), Liu Xiang(刘翔), and Fang Mao-Fa(方卯发). Chin. Phys. B, 2007, 16(5): 1215-1219.
[15] Fast scheme for generating quantum-interference states and GHZ state of N trapped ions
Zheng Xiao-Juan(郑小娟), Fang Mao-Fa(方卯发), Liao Xiang-Ping(廖湘萍), Cai Jian-Wu(蔡建武), and Cao Shuai(曹帅). Chin. Phys. B, 2007, 16(4): 906-909.
No Suggested Reading articles found!