Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040304    DOI: 10.1088/1674-1056/21/4/040304
GENERAL Prev   Next  

Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations

Xu You-Yang(徐酉阳)a), Zhou Fei(周飞)b), Chen Liang(陈亮)b) Xie Yi(谢艺)b)c), Xue Peng(薛鹏)d), and Feng Mang(冯芒)b)†
a. Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China;
b. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
c. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China;
d. Department of Physics, Southeast University, Nanjing 211189, China
Abstract  Quantum walk is different from random walk in reversibility and interference. Observation of the reduced reversibility in a realistic quantum walk is of scientific interest in understanding the unique quantum behavior. We propose an idea to experimentally investigate the decoherence-induced irreversibility of quantum walks with trapped ions in phase space via the average fidelity decay. By introducing two controllable decoherence sources, i.e., the phase damping channel (i.e., dephasing) and the high temperature amplitude reservoir (i.e., dissipation), in the intervals between the steps of quantum walk, we find that the high temperature amplitude reservoir shows more detrimental effects than the phase damping channel on quantum walks. Our study also shows that the average fidelity decay works better than the position variance for characterizing the transition from quantum walks to random walk. Experimental feasibility to monitor the irreversibility is justified using currently available techniques.
Keywords:  quantum walk      irreversibility      trapped ions      average fidelity decay  
Received:  24 September 2011      Revised:  29 November 2011      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  05.40.Fb (Random walks and Levy flights)  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.10974225,10944005,and 11004029)
Corresponding Authors:  Feng Mang, E-mail:mangfeng@wipm.ac.cn     E-mail:  mangfeng@wipm.ac.cn

Cite this article: 

Xu You-Yang(徐酉阳), Zhou Fei(周飞), Chen Liang(陈亮) Xie Yi(谢艺), Xue Peng(薛鹏), and Feng Mang(冯芒) Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations 2012 Chin. Phys. B 21 040304

[1] Aleliunas R, Karp R, Lipton R, Lovasz L and Rackoff C 1979 Proceedings of the 20th Annual Symposium on Foundations of Computer Science p. 218
[2] Selman B, Kautz H A and Cohen B 1996 DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26 1
[3] Childs A M, Farhi E and Gutmann S 2002 Quantum Inf. Process. 1 35
[4] Childs A M and Goldstone J 2004 Phys. Rev. A 70 022314
[5] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
[6] Somma R D, Boixo B, Barnum H and Knill E 2008 Phys. Rev. Lett. 101 130504
[7] Childs A M 2009 Phys. Rev. Lett. 102 180501
[8] Karski M, Förster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174
[9] Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
[10] Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
[11] Schreiber A, Cassemiro K N, Potovcek V, G郻 ris A, Mosley P J, Andersson E, Jex I and Silberhorn C 2010 Phys. Rev. Lett. 104 050502
[12] Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
[13] Richter P C 2007 New J. Phys. 9 72
[14] Richter P C 2007 Phys. Rev. A 76 042306
[15] Rebentrost P, Mohseni M, Kassal I, Lloyd S and Aspuru-Guzik A 2009 New J. Phys. 11 033003
[16] Lin F and Bao J D 2011 Chin. Phys. B 20 040502
[17] Dur W, Raussendorf R, Kendon V M and Briegel H J 2002 Phys. Rev. A 66 052319
[18] Kendon V and Tregenna B 2003 Phys. Rev. A 68 052305
[19] Romanelli A, Siri R, Abal G, Auyuanet A and Donangelo R 2004 Physica A 347 137
[20] Zhang K 2008 Phys. Rev. A 77 062302
[21] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. A 67 032304
[22] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. Lett. 91 130602
[23] Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602
[24] López C C and Paz J P 2003 Phys. Rev. A 68 052305
[25] Romanelli A 2009 Phys. Rev. A 80 022102
[26] Annabestani M, Akhtarshenas S J and Abolhassani M R 2010 arXiv/: 1004.4352v1
[27] Cucchietti F M, Dalvit D A R, Paz J P and Zurek W H 2003 Phys. Rev. Lett. 91 210403
[28] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[29] Lee P J, Brickman K A, Deslauriers L, Haljan P C, Duan L M and Monroe C 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S371
[30] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902
[31] Zhu S L, Monroe C and Duan L M 2006 Phys. Rev. Lett. 97 050505
[32] Myatt C J, King B E, Turchette Q A, Sackett C A, Kielpinski D, Itano W M, Monroe C and Wineland D J 2000 Nature (London) 403 269
[33] Turchette Q A, Myatt C J, King B E, Sackett C A, Kielpinski D, Itano W M, Monroe C and Wineland D J 2000 Phys. Rev. A 62 053807
[34] Walls D F and Milburn G J 1994 Quantum Optics (Berlin/Heidelberg: Springer-Verlag) p. 63
[35] Mackay T D, Bartlett S, Stephenson L and Sanders B 2002 J. Phys. A: Math. Gen. 35 2745
[36] Dür W, Raussendorf R, Kendon V M and Briegel H J 2002 Phys. Rev. A 66 052319
[37] Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovic B, Langer C, Rosenband T and Wineland D J 2003 Nature (London) 422 412
[38] Porras D and Cirac J I 2004 Phys. Rev. Lett. 92 207901
[39] Friedenauer A, Schmitz H, Glueckert J T, Porras D and Schaetz T 2008 Nat. Phys. 4 757
[40] Kim K, Chang M S, Korenblit S, Islam R, Edwards E E, Freericks J K, Lin G D, Duan L M and Monroe C 2010 Nature (London) 465 590
[41] Schmidt-Kaler F, Gulde S, Riebe M, Deuschle T, Kreuter A, Lancaster G, Becher C, Eschner J, Haffner H and Blatt R 2003 J. Phys. B 36 623
[42] Jaksch D, Cirac J I, Zoller P, Rolston S L, C^ot? R and Lukin M D 2000 Phys. Rev. Lett. 85 2208
[43] Cubel T, Teo B K, Malinovsky V S, Guest J R, Reinhard A, Knuffman B, Berman P R and Raithel G 2005 Phys. Rev. A 72 023405
[44] Beals T R, Vala J and Whaley K B 2008 Phys. Rev. A 77 052309
[1] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[2] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[3] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[4] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[5] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[6] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[7] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[8] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[9] State transfer on two-fold Cayley trees via quantum walks
Xi-Ling Xue(薛希玲) and Yue Ruan(阮越). Chin. Phys. B, 2021, 30(2): 020304.
[10] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[11] High winding number of topological phase in non-unitary periodic quantum walk
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚). Chin. Phys. B, 2021, 30(10): 100301.
[12] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[13] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[14] Quantum intelligence on protein folding pathways
Wen-Wen Mao(毛雯雯), Li-Hua Lv(吕丽花), Yong-Yun Ji(季永运), You-Quan Li(李有泉). Chin. Phys. B, 2020, 29(1): 018702.
[15] The entanglement of deterministic aperiodic quantum walks
Ting-Ting Liu(刘婷婷), Ya-Yun Hu(胡亚运), Jing Zhao(赵静), Ming Zhong(钟鸣), Pei-Qing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120305.
No Suggested Reading articles found!