|
|
Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations |
Xu You-Yang(徐酉阳)a), Zhou Fei(周飞)b), Chen Liang(陈亮)b) Xie Yi(谢艺)b)c), Xue Peng(薛鹏)d), and Feng Mang(冯芒)b)† |
a. Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China;
b. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
c. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China;
d. Department of Physics, Southeast University, Nanjing 211189, China |
|
|
Abstract Quantum walk is different from random walk in reversibility and interference. Observation of the reduced reversibility in a realistic quantum walk is of scientific interest in understanding the unique quantum behavior. We propose an idea to experimentally investigate the decoherence-induced irreversibility of quantum walks with trapped ions in phase space via the average fidelity decay. By introducing two controllable decoherence sources, i.e., the phase damping channel (i.e., dephasing) and the high temperature amplitude reservoir (i.e., dissipation), in the intervals between the steps of quantum walk, we find that the high temperature amplitude reservoir shows more detrimental effects than the phase damping channel on quantum walks. Our study also shows that the average fidelity decay works better than the position variance for characterizing the transition from quantum walks to random walk. Experimental feasibility to monitor the irreversibility is justified using currently available techniques.
|
Received: 24 September 2011
Revised: 29 November 2011
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
05.40.Fb
|
(Random walks and Levy flights)
|
|
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.10974225,10944005,and 11004029) |
Corresponding Authors:
Feng Mang, E-mail:mangfeng@wipm.ac.cn
E-mail: mangfeng@wipm.ac.cn
|
Cite this article:
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Chen Liang(陈亮) Xie Yi(谢艺), Xue Peng(薛鹏), and Feng Mang(冯芒) Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations 2012 Chin. Phys. B 21 040304
|
[1] |
Aleliunas R, Karp R, Lipton R, Lovasz L and Rackoff C 1979 Proceedings of the 20th Annual Symposium on Foundations of Computer Science p. 218
|
[2] |
Selman B, Kautz H A and Cohen B 1996 DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26 1
|
[3] |
Childs A M, Farhi E and Gutmann S 2002 Quantum Inf. Process. 1 35
|
[4] |
Childs A M and Goldstone J 2004 Phys. Rev. A 70 022314
|
[5] |
Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
|
[6] |
Somma R D, Boixo B, Barnum H and Knill E 2008 Phys. Rev. Lett. 101 130504
|
[7] |
Childs A M 2009 Phys. Rev. Lett. 102 180501
|
[8] |
Karski M, Förster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174
|
[9] |
Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
|
[10] |
Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
|
[11] |
Schreiber A, Cassemiro K N, Potovcek V, G郻 ris A, Mosley P J, Andersson E, Jex I and Silberhorn C 2010 Phys. Rev. Lett. 104 050502
|
[12] |
Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
|
[13] |
Richter P C 2007 New J. Phys. 9 72
|
[14] |
Richter P C 2007 Phys. Rev. A 76 042306
|
[15] |
Rebentrost P, Mohseni M, Kassal I, Lloyd S and Aspuru-Guzik A 2009 New J. Phys. 11 033003
|
[16] |
Lin F and Bao J D 2011 Chin. Phys. B 20 040502
|
[17] |
Dur W, Raussendorf R, Kendon V M and Briegel H J 2002 Phys. Rev. A 66 052319
|
[18] |
Kendon V and Tregenna B 2003 Phys. Rev. A 68 052305
|
[19] |
Romanelli A, Siri R, Abal G, Auyuanet A and Donangelo R 2004 Physica A 347 137
|
[20] |
Zhang K 2008 Phys. Rev. A 77 062302
|
[21] |
Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. A 67 032304
|
[22] |
Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. Lett. 91 130602
|
[23] |
Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602
|
[24] |
López C C and Paz J P 2003 Phys. Rev. A 68 052305
|
[25] |
Romanelli A 2009 Phys. Rev. A 80 022102
|
[26] |
Annabestani M, Akhtarshenas S J and Abolhassani M R 2010 arXiv/: 1004.4352v1
|
[27] |
Cucchietti F M, Dalvit D A R, Paz J P and Zurek W H 2003 Phys. Rev. Lett. 91 210403
|
[28] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[29] |
Lee P J, Brickman K A, Deslauriers L, Haljan P C, Duan L M and Monroe C 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S371
|
[30] |
Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902
|
[31] |
Zhu S L, Monroe C and Duan L M 2006 Phys. Rev. Lett. 97 050505
|
[32] |
Myatt C J, King B E, Turchette Q A, Sackett C A, Kielpinski D, Itano W M, Monroe C and Wineland D J 2000 Nature (London) 403 269
|
[33] |
Turchette Q A, Myatt C J, King B E, Sackett C A, Kielpinski D, Itano W M, Monroe C and Wineland D J 2000 Phys. Rev. A 62 053807
|
[34] |
Walls D F and Milburn G J 1994 Quantum Optics (Berlin/Heidelberg: Springer-Verlag) p. 63
|
[35] |
Mackay T D, Bartlett S, Stephenson L and Sanders B 2002 J. Phys. A: Math. Gen. 35 2745
|
[36] |
Dür W, Raussendorf R, Kendon V M and Briegel H J 2002 Phys. Rev. A 66 052319
|
[37] |
Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovic B, Langer C, Rosenband T and Wineland D J 2003 Nature (London) 422 412
|
[38] |
Porras D and Cirac J I 2004 Phys. Rev. Lett. 92 207901
|
[39] |
Friedenauer A, Schmitz H, Glueckert J T, Porras D and Schaetz T 2008 Nat. Phys. 4 757
|
[40] |
Kim K, Chang M S, Korenblit S, Islam R, Edwards E E, Freericks J K, Lin G D, Duan L M and Monroe C 2010 Nature (London) 465 590
|
[41] |
Schmidt-Kaler F, Gulde S, Riebe M, Deuschle T, Kreuter A, Lancaster G, Becher C, Eschner J, Haffner H and Blatt R 2003 J. Phys. B 36 623
|
[42] |
Jaksch D, Cirac J I, Zoller P, Rolston S L, C^ot? R and Lukin M D 2000 Phys. Rev. Lett. 85 2208
|
[43] |
Cubel T, Teo B K, Malinovsky V S, Guest J R, Reinhard A, Knuffman B, Berman P R and Raithel G 2005 Phys. Rev. A 72 023405
|
[44] |
Beals T R, Vala J and Whaley K B 2008 Phys. Rev. A 77 052309
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|