Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117102    DOI: 10.1088/1674-1056/abeee0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application

Hai-Qing Xie(谢海情)1, Dan Wu(伍丹)1, Xiao-Qing Deng(邓小清)1, Zhi-Qiang Fan(范志强)1,†, Wu-Xing Zhou(周五星)2, Chang-Qing Xiang(向长青)3, and Yue-Yang Liu(刘岳阳)4
1 Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China;
2 School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China;
3 College of Information Science and Engineering, Jishou University, Jishou 416000, China;
4 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We preform a first-principles study of performance of 5 nm double-gated (DG) Schottky-barrier field effect transistors (SBFETs) based on two-dimensional SiC with monolayer or bilayer metallic 1T-phase MoS2 contacts. Because of the wide bandgap of SiC, the corresponding DG SBFETs can weaken the short channel effect. The calculated transfer characteristics also meet the standard of the high performance transistor summarized by international technology road-map for semiconductors. Moreover, the bilayer metallic 1T-phase MoS2 contacts in three stacking structures all can further raise the ON-state currents of DG SiC SBFETs in varying degrees. The above results are helpful and instructive for design of short channel transistors in the future.
Keywords:  Schottky-barrier field effect transistor      SiC      band structure      short channel effect  
Received:  28 February 2021      Revised:  14 March 2021      Accepted manuscript online:  16 March 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.40.-c (Electronic transport in interface structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074046 and 12074115), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2020JJ4597, 2021JJ40558, and 2021JJ30733), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 20K007 and 20C0039), and the Key Projects of Changsha Science and Technology Plan (Grant No. kq1901102).
Corresponding Authors:  Zhi-Qiang Fan     E-mail:  zqfan@csust.edu.cn

Cite this article: 

Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳) Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application 2021 Chin. Phys. B 30 117102

[1] Zhang D D, Song X Z, Li H Y, Cai M H, Bin Z Y, Huang T Y and Duan L 2018 Adv. Mater. 30 1707590
[2] Cui Y, Li B, Li J B and Wei Z M 2018 Sci. Chin.-Phys. Mech. Astron. 61 016801
[3] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
[4] Zhao J, Zeng H and Zhou X F 2019 Carbon 145 1
[5] Chen X K and Chen K Q 2020 J. Phys.: Condens. Matter 32 153002
[6] Cui Y, Zhou Z Q, Li T, Wang K Y, Li J B and Wei Z M 2019 Adv. Funct. Mater. 29 1900040
[7] Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q and Chen K Q 2021 Phys. Rev. B 104 045412
[8] Wu D, Cao X H, Jia P J, Zeng Y J, Feng Y X, Tang L M, Zhou W X and Chen K Q 2020 Sci. Chin.-Phys. Mech. Astron. 63 276811
[9] Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
[10] Wu D, Huang L, Jia P Z, Cao X H, Fan Z Q, Zhou W X and Chen K Q 2021 Appl. Phys. Lett. 119 063503
[11] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147
[12] Quhe R G, Wang Y Y and Lu J 2015 Chin. Phys. B 24 088105
[13] Lu N D, Wang L F, Li L and Liu M 2017 Chin. Phys. B 26 036804
[14] Ren Y, Liu P, Zhou B L, Zhou X Y and Zhou G H 2019 Phys. Rev. Appl. 12 064025
[15] Yan X F, Chen Q, Li L L, Guo H Z, Peng J Z and Peeters F M 2020 Nano Energy 75 104953
[16] Sang P P, Ma X L, Wang Q W, Wei W, Wang F, Wu J X, Zhan X P, Li Y and Chen J Z 2021 Appl. Surf. Sci. 536 147836
[17] Fan Z Q, Jiang X W, Luo J W, Jiao L Y, Huang R, Li S S and Wang L W 2017 Phys. Rev. B 96 165402
[18] Fan Z Q, Jiang X W, Chen J Z and Luo J W 2018 ACS Appl. Mater. Interfaces 10 19271
[19] Uchino T, Gili E, Tan L, Buiu O, Hall S and Ashburn P 2012 Semicond. Sci. Technol. 27 062002
[20] Liu H Neal, A T and Ye P D 2012 ACS Nano 6 8563
[21] Xie H Q, Li J Y, Liu G, Cai X Y and Fan Z Q 2019 IEEE Trans. Electron Devices 66 5111
[22] Xie H Q, Li J Y, Liu G, Cai X Y and Fan Z Q 2020 IEEE Trans. Electron Devices 67 4130
[23] Gao R B, Peng X F and Chen K Q 2018 Physica E 104 302
[24] Zeng J, Chen K Q and Tong Y X 2018 Carbon 127 611
[25] Wu D, Cao X H, Chen S Z, Feng Y X, Tang L M, Zhou W X and Chen K Q 2019 J. Mater. Chem. A 7 19037
[26] Ning F, Chen S Z, Zhang Y, Liao G H, Tang P Y, Li Z L and Tang L M 2019 Appl. Surf. Sci. 496 143629
[27] An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y and Wu R Q 2020 Adv. Funct. Mater. 30 2002939
[28] Xiao Y, Wang Z W, Shi L, Jiang X W, Li S S and Wang L W 2020 Sci. Chin.-Phys. Mech. Astron. 63 277312
[29] Fan P, Qian G J, Wang D F, Li E, Wang Q, Chen H, Lin X and Gao H J 2021 Chin. Phys. B 30 018105
[30] Smidstrup S 2020 J. Phys.: Condens. Matter 32 015901
[31] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[32] Cui X Q, Liu Q, Fan Z Q and Zhang Z H 2020 Org. Electron. 84 105808
[33] Fan Z Q, Chen J Z and Jiang X W 2018 J. Phys. D: Appl. Phys. 51 335104
[34] Fan Z Q, Zhang Z H and Yang S Y 2020 Nanoscale 12 21750
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[4] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[7] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[8] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[9] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[10] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[11] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[12] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[13] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
[14] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[15] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
No Suggested Reading articles found!