ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Extended validity of weak measurement |
Jiangdong Qiu(邱疆冬)1, Changliang Ren(任昌亮)2, Zhaoxue Li(李兆雪)1, Linguo Xie(谢林果)1, Yu He(何宇)1, Zhiyou Zhang(张志友)1, Jinglei Du(杜惊雷)1 |
1 College of Physics, Sichuan University, Chengdu 610064, China; 2 Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China |
|
|
Abstract We introduce a modified weak value that is related to the mean value of input meter variable. With the help of the modified weak value, the validity conditions for various modified versions of weak value formalism are investigated, in terms of the dependence of the pointer shift on the mean value of the input meter. The weak value formalism, often used to represent the pointer shift, with the modified weak value is of great use in simplifying calculations and giving guidance of practical experiments whenever the mean value of the input meter variable is nonzero. The simulation in a qubit system is presented and coincident well with our theoretical result.
|
Received: 08 November 2019
Revised: 05 March 2020
Accepted manuscript online:
|
PACS:
|
42.50.Tx
|
(Optical angular momentum and its quantum aspects)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
42.50.Xa
|
(Optical tests of quantum theory)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0305200), the National Natural Science Foundation of China (Grant Nos. 11674234 and 11605205), the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2015jcyjA00021 and cstc2018jcyjAX0656), Innovation Project of Sichuan University, China (Grant No. 2018SCUH0021), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2015317), the Entrepreneurship and Innovation Support Program for Chongqing Overseas Returnees, China (Grant Nos. cx2017134 and cx2018040), the Fund of CAS Key Laboratory of Microscale Magnetic Resonance, and the Fund of CAS Key Laboratory of Quantum Information, China. |
Corresponding Authors:
Changliang Ren, Zhiyou Zhang
E-mail: renchangliang@cigit.ac.cn;zhangzhiyou@scu.edu.cn
|
Cite this article:
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷) Extended validity of weak measurement 2020 Chin. Phys. B 29 064214
|
[1] |
Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
|
[2] |
Brunner N, Acín A, Collins D, Gisin N and Scarani V 2003 Phys. Rev. Lett. 91 180402
|
[3] |
Brunner N, Scarani V, Wegmüller M, Legré M and Gisin N 2004 Phys. Rev. Lett. 93 203902
|
[4] |
Yokota K, Yamamoto T, Koashi M and Imot N 2009 New J. Phys. 11 033011
|
[5] |
Lundeen J S and Steinberg A M 2009 Phys. Rev. Lett. 102 020404
|
[6] |
Palacios-Laloy A, Mallet F, Nguyen F, et al. 2010 Nat. Phys. 6 442
|
[7] |
Dressel J, Broadbent C J, Howell J C and Jordan A N 2011 Phys. Rew. Lett. 106 040402
|
[8] |
Lundeen J S, Sutherland B, Patel A, Stewart C and Bamber C 2011 Nature 474 188
|
[9] |
Lundeen J S and Bamber C 2012 Phys. Rev. Lett. 108 070402
|
[10] |
Salvail J Z, Agnew M, Johnson A S, Bolduc E, Leach J and Boyd R W 2011 Nat. Phys. 7 316
|
[11] |
Zhang L J, Datta A and Walmsley I A 2015 Phys. Rev. Lett. 114 210801
|
[12] |
Pang S and Brun T A 2015 Phys. Rev. Lett. 115 120401
|
[13] |
Harris J, Boyd R W and Lundeen J S 2017 Phys. Rev. Lett. 118 070802
|
[14] |
Hosten O and Kwiat P 2008 Science. 319 787
|
[15] |
Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601
|
[16] |
Starling D J, Dixon P B, Jordan A N and Howell J C 2010 Phys. Rev. A 82 063822
|
[17] |
Brunner N and Simon C 2010 Phys. Rev. Lett. 105 010405
|
[18] |
Viza G I, et al. 2013 Opt. Lett. 38 2949
|
[19] |
Egan P and Stone J A 2012 Opt. Lett. 37 4991
|
[20] |
Li H J, Huang J Z, Yu Y, Li Y J, Fang C and Zeng G H 2018 Appl. Phys. Lett. 112 231901
|
[21] |
Chen G, Aharon N, Sun Y N, et al. 2018 Nat Commun. 9 93
|
[22] |
Chen G, Zhang L, Zhang W H, et al. 2018 Phys. Rev. Lett. 121 060506
|
[23] |
Liu W T, MartínezRincón J, Viza G I and Howell J C 2017 Opt. Lett. 42 903
|
[24] |
Salazar-Serrano L J, Guzmán D A, Valencia A and Torres J P 2015 Opt. Express 23 10097
|
[25] |
Ren C L, Qiu J D, Chen J L, Shi H F 2018 Opt. Commun. 425 19
|
[26] |
Jozsa R 2007 Phys. Rev. A 76 044103
|
[27] |
Aiello A and Woerdman J P 2008 Opt. Lett. 33 1437
|
[28] |
Dennis M R and Götte J B 2012 New J. Phys. 14 073013
|
[29] |
Kofman A G, Ashhab S and Nori F 2012 Phys. Rep. 520 43
|
[30] |
Wu S J and Li Y 2011 Phys. Rev. A 83 052106
|
[31] |
Pang S S, Wu S J and Chen Z B 2012 Phys. Rev. A 86 022112
|
[32] |
Puentes G, Hermosa N and Torres J P 2012 Phys. Rev. Lett. 109 040401
|
[33] |
Turek Y, Kobayashi H, Akutsu T, Sun C P and Shikano Y 2015 New J. Phys. 17 083029
|
[34] |
Wang B, Li P, Chen T and Zhang X 2017 J. Opt. 19 055603
|
[35] |
Aharonov Y, Colombo F, Sabadini I, et al. 2011 J. Phys. A: Math. Theor. 44 365304
|
[36] |
Berry M V and Shukla P 2012 J. Phys. A: Math. Theor. 45 015301
|
[37] |
Koike T and Tanaka S 2011 Phys. Rev. A 84 062106
|
[38] |
Susa Y, Shikano Y and Hosoya A 2012 Phys. Rev. A 85 052110
|
[39] |
Pang S S, Brun T A, Wu S J and Chen Z B 2014 Phys. Rev. A 90 012108
|
[40] |
Piacentini F, Avella A, Gramegna M, et al. 2018 Sci. Rep. 8 6959
|
[41] |
Duck I M, Stevenson P M and Sudarshan E C G 1989 Phys. Rev. D 40 2112
|
[42] |
Strübi G and Bruder C 2013 Phys. Rev. Lett. 110 083605
|
[43] |
Xu X, Kedem Y, Sun K, Vaidman L, Li C F and Guo G C 2013 Phys. Rev. Lett. 111 033604
|
[44] |
Kedem Y 2014 Phys. Lett. A 378 2096
|
[45] |
Salazar-Serrano L, Janner D, Brunner N, Pruneri V and Torres J P 2014 Phys. Rev. A 89 012126
|
[46] |
Kumar P and Dasgupta S 2015 Phys. Rev. A 91 043803
|
[47] |
Mirhosseini M, Via G I, Magaña-Loaiza O S, et al. 2016 Phys. Rev. A 93 053836
|
[48] |
Zhang Z H, Chen G, Xu X Y, et al. 2016 Phys. Rev. A 94 053843
|
[49] |
Torres J P and Salazar-Serrano L J 2016 Sci. Rep. 6 19702
|
[50] |
Kedem Y and Vaidman L 2010 Phys. Rev. Lett. 105 230401
|
[51] |
Ho L B and Imoto N 2017 Phys. Rev. A 95 032135
|
[52] |
Ho L B and Imoto N 2018 Phys. Rev. A 97 012112
|
[53] |
Dziewior J, Knips L, Farfurnik D, Senkalla K, Benshalom N, Efroni J, Meinecke J, Bar-Ad S, Weinfurter H and Vaidman L 2019 Proc. Natl. Acad. Sci. USA 116 2881
|
[54] |
Vaidman L, Ben-Israel A, Dziewior J, Knips L, Weißl M, Meinecke J, Schwemmer C, Ber R and Weinfurter H 2017 Phys. Rev. A 96 032114
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|