Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064215    DOI: 10.1088/1674-1056/ab8899
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Extra-narrowband metallic filters with an ultrathin single-layer metallic grating

Ran Wang(王然)1,2, Qi-Huang Gong(龚旗煌)1,3,4, Jian-Jun Chen(陈建军)1,3,4
1 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
2 Microelectronics Instruments and Equipments R&D Center, Institude of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
3 Nano-optoelectronics Frontier Center of Ministry of Education(NFC-MOE)&Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China;
4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Narrowband and high-transmission optical filters are extensively used in color display technology, optical information processing, and high-sensitive sensing. Because of large ohmic losses in metallic nanostructures, metallic filters usually exhibit low transmittances and broad bandwidths. By employing both strong field enhancements in metallic nano-slits and the Wood's anomaly in a periodic metallic grating, an extra-narrowband and high-transmission metallic filter is numerically predicted in an ultrathin single-layer metallic grating. Simulation results show that the Wood's anomaly in the ultrathin (thickness H=60 nm) single-layer metallic grating results in large field enhancements in the substrate and low losses in the metallic grating. As a result, the transmission bandwidth (transmittance T > 60%) at λ=1200 nm is as small as ΔλFWHM=1.6 nm, which is smaller than 4% of that in the previous thin dielectric and metallic filters. The corresponding quality factor is as high as Q=λλFWHM=750, which is 40 times greater than that in the previous reports. Moreover, the thickness of our metallic filter (H=60 nm) is smaller than 40% of that in the previous reports, and its maximum transmittance can reach up to 80%. In experiments, a narrowband metallic filter with a bandwidth of about ΔλFWHM=10 nm, which is smaller than 25% of that in the previous metallic filters, is demonstrated.
Keywords:  metallic filter      extra-narrowband      field enhancement      Wood'      s anomaly  
Received:  08 March 2020      Revised:  07 April 2020      Accepted manuscript online: 
PACS:  42.79.Ci (Filters, zone plates, and polarizers)  
  42.79.Dj (Gratings)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0704401, 2017YFF0206103, and 2016YFA0203500), the National Natural Science Foundation of China (Grant Nos. 61922002, 91850103, 11674014, 61475005, 11527901, 11525414, and 91850111), and the Beijing Natural Science Foundation, China (Grant No. Z180015).
Corresponding Authors:  Jian-Jun Chen     E-mail:  jjchern@pku.edu.cn

Cite this article: 

Ran Wang(王然), Qi-Huang Gong(龚旗煌), Jian-Jun Chen(陈建军) Extra-narrowband metallic filters with an ultrathin single-layer metallic grating 2020 Chin. Phys. B 29 064215

[1] Zheng B Y, Wang Y M, Nordlander P and Halas N J 2014 Adv. Mater. 26 6318
[2] Nguyenhuu N, Cada M, Pištora J and Yasumoto K 2014 J. Lightwave Technol. 32 4079
[3] Zhu X L, Vannahme C, Hojlundnielsen E, Mortensen N A and Kristensen A 2016 Nat. Nanotechnol. 11 325
[4] Wang W B, Zhang F J, Du M D, Li L L, Zhang M, Wang K, Wang Y S, Hu B, Fang Y and Huang J S 2017 Nano Lett. 17 1995
[5] Nagasaki Y, Suzuki M and Takahara J 2017 Nano Lett. 17 7500
[6] Proust J, Bedu F, Gallas B, Ozerov I and Bonod N 2016 ACS Nano 10 7761
[7] Kristensen A, Yang J K, Bozhevolnyi S I, Link S, Nordlander P, Halas N J and Mortensen N A 2017 Nat. Rev. Mater. 2 16088
[8] Chen J J, Gan F Y, Wang Y J and Li G Z 2018 Adv. Opt. Mater. 6 61701152
[9] Burgos S P, Yokogawa S and Atwater H A 2013 ACS Nano 7 10038
[10] Do Y S, Park J H, Hwang B Y, Lee S M, Ju B K and Choi K C 2013 Adv. Opt. Mater. 1 133
[11] Yokogawa S, Burgos S P and Atwater H A 2012 Nano Lett. 12 4349
[12] Miyata M, Hatada H and Takahara J 2016 Nano Lett. 16 3166
[13] Cheng F, Gao J, Luk T S and Yang X D 2015 Sci. Rep. 5 11045
[14] Shah Y D, Grant J, Hao D, Kenney M, Pusino V and Cumming D R 2018 Acs Photon. 5 663
[15] Xu T, Wu Y K, Luo X G and Guo L J 2010 Nat. Commun. 1 59
[16] Diest K, Dionne J A, Spain M and Atwater H A 2009 Nano Lett. 9 2579
[17] Li Z Y, Butun S and Aydin K 2015 ACS Photon. 2 183
[18] Liu H T and Lalanne P 2008 Nature 452 728
[19] Kim K Y, Chong X Y, Ren F H and Wang A X 2015 Opt. Lett. 40 5339
[20] Gao H, Mcmahon J M, Lee M H, Henzie J, Gray S K, Schatz G C and Odom T W 2009 Opt. Express 17 2334
[21] Zhang Y F, Wang H M, Liao H M, Li Z, Sun C W, Chen J J and Gong Q H 2014 Appl. Phys. Lett. 105 231101
[22] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[23] Heydari E, Sperling J R, Neale S L and Clark A W 2017 Adv. Funct. Mater. 27 1701866
[24] Chen J J, Sun C W, Rong K X, Li H Y and Gong Q H 2015 Laser Photon. Rev. 9 419
[25] Bao Y M, Liang H, Liao H M, Li Z, Sun C W, Chen J J and Gong Q H 2017 Plasmonics 12 1425
[26] Sun C W, Rong K X, Wang Y J, Li H Y, Gong Q H and Chen J J 2016 Nanotechnology 27 065501
[27] Huang J S, Callegari V, Geisler P, Brüning C, Kern, J, Prangsma J C, Wu X F, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P Sennhauser U and Hecht B 2010 Nat. Commun. 1 150
[28] Wang C Y, Chen H Y, Sun L Y, Chen W L, Chang Y M, Ahn H, Li X Q and Gwo S 2015 Nat. Commun. 6 7734
[29] Bhatta U M, Dash J K, Rath A and Satyam P V 2009 Appl. Surf. Sci. 256 567
[30] Chen K, Razinskas G, Vieker H, Gross H, Wu X F, Beyer A, Gölzhäuser A and Hecht B 2018 Nanoscale 10 17148
[31] Zheng M J, Chen Y Q, Liu Z, Liu Y, Wang Y S, Liu P, Liu Q, Bi K X, Shu Z W, Zhang Y H and Duan H G 2019 Microsyst. Nanoeng. 5 54
[32] Chen Y Q, Xiang Q, Li Z Q, Wang Y S, Meng Y H and Duan H G 2016 Nano Lett. 16 3253
[33] Duan H G, Hu H L, Kumar K, Shen Z X and Yang K W 2011 ACS Nano 5 7593
[1] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[2] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[3] Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军). Chin. Phys. B, 2019, 28(10): 107802.
[4] Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Chen Dong (陈栋), Fang Yun-Tuan (方云团), Chen Ming-Yang (陈明阳). Chin. Phys. B, 2015, 24(8): 087301.
[5] Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平). Chin. Phys. B, 2014, 23(8): 087303.
[6] Interplay between out-of-plane magnetic plasmon and lattice resonance for modified resonance lineshape and near-field enhancement in double nanoparticles array
Ding Pei (丁佩), Wang Jun-Qiao (王俊俏), He Jin-Na (何金娜), Fan Chun-Zhen (范春珍), Cai Gen-Wang (蔡根旺), Liang Er-Jun (梁二军). Chin. Phys. B, 2013, 22(12): 127802.
[7] Influence of polarization direction, incidence angle, and geometry on near-field enhancement in two-layered gold nanowires
Wu Da-Jian(吴大建), Jiang Shu-Min(蒋书敏), and Liu Xiao-Jun(刘晓峻) . Chin. Phys. B, 2012, 21(7): 077803.
[8] Near-field properties of a shell nanocylinder pair with gain materials
Wang Qiao (王乔), Wu Shi-Fa (吴世法), Wang Xiao-Gang (王晓钢 ). Chin. Phys. B, 2012, 21(11): 117302.
[9] Simultaneous low extinction and high local field enhancement in Ag nanocubes
Zhou Fei(周飞), Liu Ye(刘晔), and Li Zhi-Yuan(李志远). Chin. Phys. B, 2011, 20(3): 037303.
[10] Coherent control of negative refraction based on local-field enhancement and dynamically induced chirality
Ba Nuo (巴诺), Gao Jin-Wei (高金伟), Tian Xing-Xia (田杏霞), Wu Xi (吴熙), Wu Jin-Hui (吴金辉). Chin. Phys. B, 2010, 19(7): 074208.
[11] Numerical analysis of surface plasmon nanocavities formed in thickness-modulated metal-insulator-metal waveguides
Liu Jian-Long(刘建龙), Lin Jie(林杰), Zhao Hai-Fa(赵海发), Zhang Yan(张岩), and Liu Shu-Tian(刘树田). Chin. Phys. B, 2010, 19(5): 054201.
[12] Field emission of carbon nanotube array with normal-gate cold cathode
Dai Jian-Feng(戴剑锋), Mu Xiao-Wen(慕晓文), Qiao Xian-Wu(乔宪武), Chen Xiao-Xing(陈小婷), and Wang Jun-Hong(王军红). Chin. Phys. B, 2010, 19(5): 057201.
No Suggested Reading articles found!